偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 資料請求
  • カウンセリング

2016年慶應大学商学部|過去問徹底研究 大問2

2019.10.01

方針の立て方 殆ど全てが基本問題であり特筆事項なし. 最後の面積は,円形の部分の面積を求めるのに工夫が必要である.円の積分は(文系数学の範囲では)出来ないため,解析的にではなく幾何学的に求めることになると判断しよう. 解答例 (ⅰ) (ウ) (ⅱ) (4) (5) (6) (7)(8) (9) (1

  • …続きを読む
  • 方針の立て方
    殆ど全てが基本問題であり特筆事項なし.
    最後の面積は,円形の部分の面積を求めるのに工夫が必要である.円の積分は(文系数学の範囲では)出来ないため,解析的にではなく幾何学的に求めることになると判断しよう.

    解答例
    (ⅰ)
    (ウ)4a\left(c-a\right)

    (ⅱ)
    (4)1
    (5)2
    (6)2
    (7)(8)-1
    (9)2
    (10)(11)-2

    (ⅲ)
    (エ)8a^2+2

    (ⅳ)
    (12)(13)\frac{1}{2}
    (14)(15)-2
    (16)(17)\frac{5}{2}
    (18)1
    (19)1
    (20)(21)\frac{7}{3}
    (22)(23)\frac{1}{2}

    解説
    (ⅰ)(ⅱ)
    f^\prime\left(x\right)=2ax+b
    放物線y=f\left(x\right)と直線y=f^\prime\left(x\right)の接点を\left(t,at^2+bt+c\right)とすると,接線はy=\left(2at+b\right)x-at^2+cと表せる.これがy=f^\prime\left(x\right)と一致するので,係数比較すると,
    \begin{cases} 2at+b=2a \\ -at^2+c=b \end{cases}\Leftrightarrow\begin{cases} t=1-\frac{b}{2a} \\ b^2=4a\left(c-a\right) \end{cases}
    よって,b^2=4a\left(c-a\right)……(答)
    また,t=1-\frac{b}{2a},b^2=4a\left(c-a\right)\Leftrightarrow c=a+\frac{b^2}{4a}より接点の座標は,
    \left(1-\frac{b}{2a},a\left(1-\frac{b}{2a}\right)^2+b\left(1-\frac{b}{2a}\right)+a+\frac{b^2}{4a}\right)=\left(1-\frac{b}{2a},2a\right)……(答)
    放物線y=-f\left(x\right)と直線y=f^\prime\left(x\right)の接点についても,同様に考える.接点を\left(t,-at^2-bt-c\right)とおくと,y^\prime=-f^\prime\left(x\right)=-2ax-bより,接線はy=-\left(2at+b\right)x+at^2-cと表せる.これがy=f^\prime\left(x\right)と一致するので,係数比較すると,
    \begin{cases} -\left(2at+b\right)=2a \\ at^2-c=b \end{cases}\Leftrightarrow\begin{cases} t=-1-\frac{b}{2a} \\ c=a+\frac{b^2}{4a} \end{cases}
    よって,接点\mathrm{P}の座標は,
    \left(-1-\frac{b}{2a},-a\left(-1-\frac{b}{2a}\right)^2-b\left(-1-\frac{b}{2a}\right)-\left(a+\frac{b^2}{4a}\right)\right)=\left(-1-\frac{b}{2a},-2a\right)……(答)

    (ⅲ)
    原点と直線y=f^\prime\left(x\right)の距離は,点と直線の距離の公式より\frac{\left|b\right|}{\sqrt{4a^2+1}}.よって,直線y=f^\prime\left(x\right)が原点を中心とする半径\sqrt2の円\mathrm{O}と接するための必要十分条件は,
    \frac{\left|b\right|}{\sqrt{4a^2+1}}=\sqrt2\Leftrightarrow b^2=8a^2+2……(答)

    (ⅳ)
    接点\mathrm{Q}の座標は,円\mathrm{O}の式がx^2+y^2=2であることより,
    \begin{cases} x^2+y^2=2 \\ y=2ax+b \end{cases}
    b^2=8a^2+2を用いてこれを解くと,
    \left(x,y\right)=\left(-\frac{4a}{b},\frac{2}{b}\right) (重解)
    となる.よって,接点\mathrm{Q}の座標は\left(-\frac{4a}{b},\frac{2}{b}\right)
    これが点\mathrm{P}と一致するのは,
    \begin{cases} -1-\frac{b}{2a}=-\frac{4a}{b} \\ -2a=\frac{2}{b} \end{cases}
    \Leftrightarrow\left(a,b\right)=\left(\frac{1}{2},-2\right)\left(-\frac{1}{2},2\right)
    aは正の実数のため,\left(a,b\right)=\left(\frac{1}{2},-2\right)が適当.これを条件(A)の式:c=a+\frac{b^2}{4a}に代入すると,c=\frac{5}{2}
    \therefore a=\frac{1}{2},b=-2,c=\frac{5}{2}……(答)
    このとき,円\mathrm{O}と放物線y=f\left(x\right)=\frac{1}{2}x^2-2x+\frac{5}{2}の共有点は,
    \begin{cases} x^2+y^2=2 \\ y=\frac{1}{2}x^2-2x+\frac{5}{2} \end{cases}\Leftrightarrow\left(x,y\right)=\left(1,1\right)
    より,\left(1,1\right)……(答)
    放物線y=f\left(x\right)=\frac{1}{2}x^2-2x+\frac{5}{2},直線y=f^\prime\left(x\right)=x-2,円\mathrm{O}x^2+y^2=2を図示すると,

    上図.点\left(0,0\right),\left(1,-1\right),\left(1,1\right),\left(2,0\right)の4点を頂点とする正方形内について考えると,題意を満たす領域の面積は,正方形から四分円を引いた面積と等しくなるため,
    \left(\sqrt2\right)^2-\frac{1}{4}\cdot\pi\left(\sqrt2\right)^2
    と書ける.
    よって,求める面積は,
    \left(\sqrt2\right)^2-\frac{1}{4}\cdot\pi\left(\sqrt2\right)^2+\int_{1}^{2}\left\{\frac{1}{2}x^2-2x+\frac{5}{2}-\left(-x+2\right)\right\}dx+\int_{2}^{3}\left\{\frac{1}{2}x^2-2x+\frac{5}{2}-\left(x-2\right)\right\}dx=2-\frac{1}{2}\pi+\left[\frac{1}{6}x^3-\frac{1}{2}x^2+\frac{1}{2}x\right]_1^2+\left[\frac{1}{6}x^3-\frac{3}{2}x^2+\frac{9}{2}x\right]_2^3=\frac{7}{3}-\frac{1}{2}\pi……(答)

2016年慶應大学商学部|過去問徹底研究 大問1

2019.10.01

方針の立て方 (ⅰ)(ⅱ)ともに典型問題であるため,特筆事項なし. 解答例 (ⅰ) (1) (2) (3) (ⅱ) (ア) (イ) 解説 (ⅰ) は初項,公比の等比数列であるから, である. 〇を満たす((1)について) の場合,であるから,を満たすには, であれば必要十分.のとき,この不等式は満た

  • …続きを読む
  • 方針の立て方
    (ⅰ)(ⅱ)ともに典型問題であるため,特筆事項なし.

    解答例
    (ⅰ)
    (1)9
    (2)3
    (3)\begin{cases} 2  \left(k=1\right) \\ 3  \left(k=5,10\right) \end{cases}
    (ⅱ)
    (ア)\alpha=0,\pi
    (イ)\alpha=\frac{1}{2}\pi,\frac{3}{2}\pi

    解説
    (ⅰ)
    \left\{S_n\right\}は初項k,公比kの等比数列であるから,
    S_n=k\cdot k^{n-1}=k^n
    である.
    \therefore a_1=S_1=k,a_n=S_n-S_{n-1}=\left(k-1\right)k^{n-1}\left(n\geqq2\right)
    a_n\geqq5000を満たすn((1)について)
    k=3の場合,a_1=3,a_n=2\cdot3^{n-1}\left(n\geqq2\right)であるから,a_n\geqq5000を満たすには,
    2\cdot3^{n-1}\geqq5000
    であれば必要十分.n\geqq9のとき,この不等式は満たされる.
    \therefore n\geqq9……(答)
    a_nが100の倍数となるnが存在する場合((2)と(3)について)
    10以下の自然数ka_1\left(=k\right)が100の倍数となることはない.
    10以下の自然数kの内,a_n=\left(k-1\right)k^{n-1}\left(n\geqq2\right)100\left(=2^2\cdot5^2\right)の倍数となるnが存在するものを考える.
    k=1のとき,a_n=0\left(n\geqq2\right)であり,これは任意のnで100の倍数となる.
    k=2のとき,a_n=2^{n-1}\left(n\geqq2\right)であり,素因数5を含まないため全てのnで100の倍数とはならない.
    k=3のとき,a_n=2\cdot3^{n-1}\left(n\geqq2\right)であり,素因数5を含まないため全てのnで100の倍数とはならない.
    k=4のとき,a_n=3\cdot4^{n-1}\left(n\geqq2\right)であり,素因数5を含まないため全てのnで100の倍数とはならない.
    k=5のとき,a_n=2^2\cdot5^{n-1}\left(n\geqq2\right)であり,これはn-1\geqq2\Leftrightarrow n\geqq3のとき100の倍数となる.
    k=6のとき,a_n=5\cdot6^{n-1}\left(n\geqq2\right)であり,素因数5を1つしか含まないため全てのnで100の倍数とはならない.
    k=7のとき,a_n=6\cdot7^{n-1}\left(n\geqq2\right)であり,素因数5を含まないため全てのnで100の倍数とはならない.
    k=8のとき,a_n=7\cdot8^{n-1}\left(n\geqq2\right)であり,素因数5を含まないため全てのnで100の倍数とはならない.
    k=9のとき,a_n=8\cdot9^{n-1}\left(n\geqq2\right)であり,素因数5を含まないため全てのnで100の倍数とはならない.
    k=10のとき,a_n=9\cdot{10}^{n-1}\left(n\geqq2\right)であり,これはn-1\geqq2\Leftrightarrow n\geqq3のとき100の倍数となる.
    以上より,a_nが100の倍数となるnが存在するような10以下の自然数kk=1,5,10の3つ……(答)
    また,このとき,a_nが100の倍数となるのは,\begin{cases} n\geqq2  \left(k=1\right) \\ n\geqq3  \left(k=5,10\right) \end{cases}のとき……(答)

    (ⅱ)
    \begin{cases} X=\sin{t} \\ Y=\sin{\left(t+\alpha\right)} \end{cases}
    とおくと,加法定理より,
    Y=\sin{\left(t+\alpha\right)}=\sin{t}\cos{\alpha}+\cos{t}\sin{\alpha}
    であるから,
    Y=\begin{cases} \cos{\alpha}\cdot X+\sin{\alpha}\sqrt{1-X^2}\left(0\leqq t\leqq\frac{\pi}{2},\frac{3}{2}\pi\leqq t\leqq2\pi\right) \\ \cos{\alpha}\cdot X-\sin{\alpha}\sqrt{1-X^2}\left(\frac{\pi}{2}\leqq t\leqq\frac{3}{2}\pi\right) \end{cases}
    となる.
    Tが線分となるような\alphaの値((ア)について)
    Tが線分となるのは\sqrt{1-X^2}の係数\sin{\alpha}が0となるとき.
    \therefore\sin{\alpha}=0\Leftrightarrow\alpha=0,\pi……(答)
    Tが原点を中心とする円となるような\alphaの値((イ)について)
    Tが原点を中心とする円となるのはXの係数\cos{\alpha}が0となるとき(そのとき\sin{\alpha}=\pm1となりTの式はx^2+y^2=1となる).
    \therefore\cos{\alpha}=0\Leftrightarrow\alpha=\frac{1}{2}\pi,\frac{3}{2}\pi……(答)

2016年早稲田大学商学部|過去問徹底研究 大問3

2019.09.30

方針の立て方 簡単にでも作図をすることで題意とつかめ,方針も得られる. (1) 基本問題であるため,特筆事項はない.角度に関する情報が何も問題文で与えられていないため,余弦定理を用いて角度の情報を得ることを考える. (2) 実際に作図することで,全ての三角形が合同であることが分かる.これを利用すると

  • …続きを読む
  • 方針の立て方
    簡単にでも作図をすることで題意とつかめ,方針も得られる.
    (1)
    基本問題であるため,特筆事項はない.角度に関する情報が何も問題文で与えられていないため,余弦定理を用いて角度の情報を得ることを考える.
    (2)
    実際に作図することで,全ての三角形が合同であることが分かる.これを利用すると,\triangle\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{2}に着目するのが有効だと分かる.後は余弦定理を用いればよいので,余弦定理に必要な\cos{\angle\mathrm{A}_\mathrm{2}\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{0}}の情報を求める問題に帰着できる.(※\triangle\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{2}は二等辺三角形であるから,頂角の二等分線を引くことで求める解法も使える.)
    (3)
    これも試しに\mathrm{A}_\mathrm{3}まで作図してみると,本解答の図のように,ジグザグになっていることが分かる.

    解答例
    (1)

    左図のように,線分\mathrm{A}_0\mathrm{A}_1と直線\mathrm{C}_0\mathrm{B}_0の交点を\mathrm{A}_\mathrm{H}とする.すると,
    \mathrm{A}_0\mathrm{A}_\mathrm{H}=\mathrm{A}_0\mathrm{C}_0\sin{\angle\mathrm{A}_\mathrm{0}\mathrm{C}_\mathrm{0}\mathrm{B}_\mathrm{0}}
    である.\mathrm{\triangle}\mathrm{A}_\mathrm{0}\mathrm{C}_\mathrm{0}\mathrm{B}_\mathrm{0}に余弦定理を用いると,
    {\mathrm{A}_\mathrm{0}\mathrm{B}_\mathrm{0}}^2={{\mathrm{C}_\mathrm{0}\mathrm{A} }_\mathrm{0}}^2+{\mathrm{B}_\mathrm{0}\mathrm{C}_\mathrm{0}}^2-2\cdot{\mathrm{C}_\mathrm{0}\mathrm{A} }_\mathrm{0}\cdot{\mathrm{B}_\mathrm{0}\mathrm{C} }_\mathrm{0}\cos{\angle\mathrm{A}_\mathrm{0}\mathrm{C}_\mathrm{0}\mathrm{B}_\mathrm{0}}\bigm\Leftrightarrow5^2=8^2+7^2-2\cdot8\cdot7\cos{\angle\mathrm{A}_\mathrm{0}\mathrm{C}_\mathrm{0}\mathrm{B}_\mathrm{0}}\Leftrightarrow\cos{\angle\mathrm{A}_\mathrm{0}\mathrm{C}_\mathrm{0}\mathrm{B}_\mathrm{0}}=\frac{11}{14}
    であるから,\sin{\angle\mathrm{A}_\mathrm{0}\mathrm{C}_\mathrm{0}\mathrm{B}_\mathrm{0}}=\frac{5\sqrt3}{14}
    \therefore\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{H}=8\cdot\frac{5\sqrt3}{14}=\frac{20\sqrt3}{7}
    \therefore\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{1}=2\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{H}=2\cdot\frac{20\sqrt3}{7}=\frac{40\sqrt3}{7}……(答)

    (2)

    左図で全ての三角形は合同である.
    よって,\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{1}=\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{2}=\frac{40\sqrt3}{7}である.
    また,\angle\mathrm{B}_\mathrm{1}\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{2}=\angle\mathrm{B}_\mathrm{0}\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{0}より,
    \angle\mathrm{A}_\mathrm{2}\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{0}=\angle\mathrm{B}_\mathrm{1}\mathrm{A}_\mathrm{1}\mathrm{B}_\mathrm{0}=2\angle\mathrm{C}_\mathrm{0}\mathrm{A}_\mathrm{1}\mathrm{B}_\mathrm{0}=2\angle\mathrm{C}_\mathrm{0}\mathrm{A}_\mathrm{0}\mathrm{B}_\mathrm{0}
    である.よって,
    \cos{\angle\mathrm{A}_\mathrm{2}\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{0}}=\cos{2\angle\mathrm{C}_\mathrm{0}\mathrm{A}_\mathrm{0}\mathrm{B}_\mathrm{0}}=1-2{\mathrm{sin}}^2\angle\mathrm{C}_\mathrm{0}\mathrm{A}_\mathrm{0}\mathrm{B}_\mathrm{0}
    ここで,\triangle\mathrm{A}_\mathrm{0}\mathrm{C}_\mathrm{0}\mathrm{B}_\mathrm{0}に正弦定理を用いると,
    \frac{\mathrm{C}_\mathrm{0}\mathrm{B}_\mathrm{0}}{\sin{\angle\mathrm{C}_\mathrm{0}\mathrm{A}_\mathrm{0}\mathrm{B}_\mathrm{0}}}=\frac{\mathrm{A}_\mathrm{0}\mathrm{B}_\mathrm{0}}{\sin{\angle\mathrm{A}_\mathrm{0}\mathrm{C}_\mathrm{0}\mathrm{B}_\mathrm{0}}}\Longleftrightarrow\frac{7}{\sin{\angle\mathrm{C}_\mathrm{0}\mathrm{A}_\mathrm{0}\mathrm{B}_\mathrm{0}}}=\frac{5}{\frac{5\sqrt3}{14}}\Leftrightarrow\sin{\angle\mathrm{C}_\mathrm{0}\mathrm{A}_\mathrm{0}\mathrm{B}_\mathrm{0}}=\frac{\sqrt3}{2}
    \therefore\cos{\angle\mathrm{A}_\mathrm{2}\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{0}}=1-2\left(\frac{\sqrt3}{2}\right)^2=-\frac{1}{2}
    よって,\triangle\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{2}に余弦定理を用いると,
    {\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{2}}^2={\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{2}}^2+{\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{2}}^2-2\cdot\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{2}\cdot\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{2}\cos{\angle\mathrm{A}_\mathrm{2}\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{0}}\bigm\Leftrightarrow{\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{2}}^2=\left(\frac{40\sqrt3}{7}\right)^2+\left(\frac{40\sqrt3}{7}\right)^2-2\cdot\frac{40\sqrt3}{7}\cdot\frac{40\sqrt3}{7}\cdot\left(-\frac{1}{2}\right)\Leftrightarrow\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{2}=\frac{120}{7}……(答)

    (3)
    前問と同様に考えると,

    上図のようになる.
    \therefore\mathrm{A}_\mathrm{0}\mathrm{A}_{\mathrm{2016}}=\frac{2016}{2}\cdot\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{2}=17280……(答)

2016年早稲田大学商学部|過去問徹底研究 大問2

2019.09.30

方針の立て方 実際に図形を描いて試してみると題意をつかみやすい.問題文の通りに考えると,「を決めると線分が決まり,を変数(はによって定まる)としてを考えることができる」ということである.を考えるときには,は定数扱いする. (1) はによって定まるので,は実質の一変数関数(2次関数)となる.後は2次関

  • …続きを読む
  • 方針の立て方
    実際に図形を描いて試してみると題意をつかみやすい.問題文の通りに考えると,「\alpha,\betaを決めると線分\mathrm{P}_1\mathrm{P}_2が決まり,aを変数(baによって定まる)としてS\left(a,b\right)を考えることができる」ということである.S\left(a,b\right)を考えるときには,\alpha,\betaは定数扱いする.
    (1)
    baによって定まるので,S\left(a,b\right)は実質aの一変数関数(2次関数)となる.後は2次関数の最大値問題を解く解法を取ればよい.
    M\left(\alpha,\beta\right)は,引数からも分かるように\alpha,\betaの関数である.よって,M\left(\alpha,\beta\right)について考えるときには,変数は\alpha,\betaである.
    (2)
    まずは指定されている条件を\alpha,\betaの式で書き直すこと.そうすれば,以下では\alpha,\betaを変数で扱うと都合がいいことが分かる(書き直した条件:\beta=\alpha+1より,実質変数は\alphaのみとなる).後は,存在範囲を考えれば良い.典型的な一文字固定法の考え方で解こうとすると,-1\leqq k\leqq00\leqq k\leqq1のときで場合分けが必要になることが分かる.後は,それぞれで場合分けをして考えていく.図形で考えたときにS\left(a,b\right)がどういう意味を持つのかを考えよう.

    解答例
    (1)
    線分\mathrm{P}_1\mathrm{P}_2:y=\left(\alpha+\beta\right)x-\alpha\beta (\alpha\leqq x\leqq\beta)
    \mathrm{P}\left(a,b\right)を代入して,
    b=\left(\alpha+\beta\right)a-\alpha\beta (\alpha\leqq a\leqq\beta)
    \therefore S\left(a,b\right)=b-a^2=\left(\alpha+\beta\right)a-\alpha\beta-a^2=-\left(a-\frac{\alpha+\beta}{2}\right)^2+\frac{\left(\beta-\alpha\right)^2}{4}\leqq\frac{\left(\beta-\alpha\right)^2}{4}
    等号成立はa=\frac{\alpha+\beta}{2}のときであり,これは\mathrm{P}_1\mathrm{P}_2の中点であり,適当である.
    \therefore M\left(\alpha,\beta\right)=\frac{\left(\beta-\alpha\right)^2}{4}……(答)

    (2)
    ⅰ)を満たすには,
    \frac{\left(\beta-\alpha\right)^2}{4}=\frac{1}{4}
    であれば必要十分.\beta-\alpha>0に注意して解くと,
    \beta-\alpha=1\Leftrightarrow\beta=\alpha+1
    ⅱ)を満たすには,
    \left|\alpha+\beta\right|\leqq1
    これらを図示すると,

    つまり,
    \begin{cases} \beta=\alpha+1 \\ -1\leqq\alpha\leqq0 \end{cases}
    さて,考えている存在範囲のx座標の範囲は-1\leqq\alpha\leqq x\leqq\beta=\alpha+1\leqq1より,-1\leqq x\leqq1である.そこで,考えている存在範囲のx=k\left(-1\leqq k\leqq1\right)でのy座標の最大値と最小値の差を求める.これを求めるには,\alpha,\betaを変数として,S\left(k,b\right)の最大値と最小値を考えれば良い.ここで,
    S\left(k,b\right)=\left(\alpha+\beta\right)k-\alpha\beta-k^2=\left(2\alpha+1\right)k-\alpha\left(\alpha+1\right)-k^2=-\left(\alpha-\frac{2k-1}{2}\right)^2+\frac{1}{4}
    である.
    -1\leqq k\leqq0のとき
    -1\leqq\alpha\leqq kの範囲を考えれば必要十分.

    \frac{2k-1}{2}<kはいつでも成り立つ.
    ①の場合\left(\frac{2k-1}{2}\leqq-1\Leftrightarrow k\leqq-\frac{1}{2}\right)
    0=\left.S\left(k,b\right)\right|_{\alpha=k}\leqq S\left(k,b\right)\leqq\left.S\left(a,b\right)\right|_{\alpha=-1}=-k^2-k
    ②の場合\left(-1\leqq\frac{2k-1}{2}\Leftrightarrow-\frac{1}{2}\leqq k\right)
    0=\left.S\left(k,b\right)\right|_{\alpha=k}\leqq S\left(k,b\right)\leqq\left.S\left(a,b\right)\right|_{\alpha=\frac{2k-1}{2}}=\frac{1}{4}
    0\leqq k\leqq1のとき,
    k\leqq\beta\leqq1\Leftrightarrow k-1\leqq\alpha\leqq0の範囲を考えれば必要十分.

    k-1<\frac{2k-1}{2}はいつでも成り立つ.
    ①の場合\left(0\leqq\frac{2k-1}{2}\Leftrightarrow\frac{1}{2}\leqq k\right)
    0=\left.S\left(k,b\right)\right|_{\alpha=k-1}\leqq S\left(k,b\right)\leqq\left.S\left(a,b\right)\right|_{\alpha=0}=-k^2+k
    ②の場合\left(\frac{2k-1}{2}\leqq0\Leftrightarrow k\leqq\frac{1}{2}\right)
    0=\left.S\left(k,b\right)\right|_{\alpha=k-1}\leqq S\left(k,b\right)\leqq\left.S\left(a,b\right)\right|_{\alpha=\frac{2k-1}{2}}=\frac{1}{4}
    以上より,求める面積は,
    \int_{-1}^{-\frac{1}{2}}\left(-k^2-k\right)dk+\int_{-\frac{1}{2}}^{0}\frac{1}{4}dk+\int_{0}^{\frac{1}{2}}\frac{1}{4}dk+\int_{\frac{1}{2}}^{1}\left(-k^2+k\right)dk=\left[-\frac{1}{3}k^3-\frac{1}{2}k^2\right]_{-1}^{-\frac{1}{2}}+\left[\frac{1}{4}k\right]_{-\frac{1}{2}}^0+\left[\frac{1}{4}k\right]_0^{\frac{1}{2}}+\left[-\frac{1}{3}k^3+\frac{1}{2}k^2\right]_{\frac{1}{2}}^1=\frac{5}{12}……(答)

2016年早稲田大学商学部|過去問徹底研究 大問1

2019.09.30

方針の立て方 (1) 典型問題であり,特筆事項なし. (2) 代数方程式の有理数解に着目していることから解法を得る. (3) 実際に考えてみることで解法を得る.ただし,を正2016角形で考えるのは難しいため,正4角形や,正5角形,正6角形などで考えてみる.そうすると,約数の問題であることに気付ける.

  • …続きを読む
  • 方針の立て方
    (1)
    典型問題であり,特筆事項なし.

    (2)
    代数方程式の有理数解に着目していることから解法を得る.

    (3)
    実際に考えてみることで解法を得る.ただし,Pを正2016角形で考えるのは難しいため,正4角形や,正5角形,正6角形などで考えてみる.そうすると,約数の問題であることに気付ける.

    (4)
    最初の式のままでは考えづらいため,変形を試みる.そこで,積和の公式を使って,三角関数の積の形を和の形に直す.
    本問に限らず,数学では,和から積への変形,積から和への変形をすることで解法が見えることが多いため,困ったときにはこのような変形をとりあえず試みることを心がけよう.

    解答例
    (1)ア:1024
    (2)イ:5
    (3)ウ:3528
    (4)エ:-1008

    解説
    (1)
    合同式の法は全部2016とする.
    2^{11}=2048\equiv32=2^5
    である.
    \therefore2^{100}=2\cdot\left(2^{11}\right)^9\equiv2\cdot\left(2^5\right)^9=2^2\cdot\left(2^{11}\right)^4≡22⋅254=2112≡252=1024……(答)

    (2)
    有理数解は全て

    の形で表せる.よって,1以上の有理数解の候補は,1,\frac{3}{2},3である.
    (ⅰ)x=1が解になると仮定して,方程式に代入すると
    2\cdot1^3-a\cdot1^2+b\cdot1+3=0\Leftrightarrow a=5+b\geqq5+1=6
    (ⅱ)x=\frac{3}{2}が解になると仮定して,方程式に代入すると
    2\cdot\left(\frac{3}{2}\right)^3-a\cdot\left(\frac{3}{2}\right)^2+b\cdot\frac{3}{2}+3=0\Leftrightarrow a=\frac{2b+13}{3}\geqq\frac{2\cdot1+13}{3}=5
    (ⅱ)x=3が解になると仮定して,方程式に代入すると
    2\cdot3^3-a\cdot3^2+b\cdot3+3=0\Leftrightarrow a=\frac{b+19}{3}\geqq\frac{1+19}{3}=\frac{20}{3}
    以上(ⅰ)~(ⅲ)より,求めるaの最小値は,5……(答)

    (3)
    2016の任意の約数をaとする.
    Pの頂点を結ぶことで作ることができる正多角形は,正a角形(a=1,2を除く)のみである.
    a角形の作り方は\frac{2016}{a}通りあるが,\frac{2016}{a}も2016の約数となる.
    よって,求める個数は,2016の約数の和から,a=1,2のときの分\frac{2016}{a}=2016,1008を除いた個数となる.2016=2^5\cdot3^2\cdot7より,2016の約数の和は,
    \sum_{z=0}^{1}\sum_{y=0}^{2}\sum_{x=0}^{5}{2^x\cdot3^y\cdot7^z}=\left(7^0+7^1\right)\left(3^0+3^1+3^2\right)\left(2^0+2^1+2^2+2^3+2^4+2^5\right)=8\cdot13\cdot63=6552
    よって,求める個数は,
    6552-2016-1008=3528個……(答)

    (4)
    \left(\sum_{k=1}^{2016}{k\sin{\frac{\left(2k-1\right)\pi}{2016}}}\right)\sin{\frac{\pi}{2016}}=\sum_{k=1}^{2016}\left\{k\sin{\frac{\left(2k-1\right)\pi}{2016}}\sin{\frac{\pi}{2016}}\right\}
    ここで,積和の公式より,
    \sin{\frac{\left(2k-1\right)\pi}{2016}}\sin{\frac{\pi}{2016}}=\frac{1}{2}\left\{\cos{\frac{\left(k-1\right)\pi}{1008}}-\cos{\frac{k\pi}{1008}}\right\}
    であるから,
    \sum_{k=1}^{2016}\left\{k\sin{\frac{\left(2k-1\right)\pi}{2016}}\sin{\frac{\pi}{2016}}\right\}=\sum_{k=1}^{2016}\left\{\frac{k}{2}\cos{\frac{\left(k-1\right)\pi}{1008}}-\frac{k}{2}\cos{\frac{k\pi}{1008}}\right\}=\left(\frac{1}{2}\cos{\frac{0}{1008}}-\frac{1}{2}\cos{\frac{\pi}{1008}}\right)+\left(\frac{2}{2}\cos{\frac{\pi}{1008}}-\frac{2}{2}\cos{\frac{2\pi}{1008}}\right)+\left(\frac{3}{2}\cos{\frac{2\pi}{1008}}-\frac{3}{2}\cos{\frac{3\pi}{1008}}\right)+\cdots\cdots+\left(\frac{2016}{2}\cos{\frac{2015\pi}{1008}}-\frac{2016}{2}\cos{\frac{2016\pi}{1008}}\right)=\frac{1}{2}\left(\cos{\frac{0}{1008}}+\cos{\frac{\pi}{1008}}+\cos{\frac{2\pi}{1008}}+\cdots\cdots+\cos{\frac{2015\pi}{1008}}\right)-1008\cos{2\pi}
    S=\cos{\frac{0}{1008}}+\cos{\frac{\pi}{1008}}+\cos{\frac{2\pi}{1008}}+\cdots\cdots+\cos{\frac{2015\pi}{1008}}とおくと,

    上図のように,単位円上では左右対称であるため,項が全て相殺し,0となる.
    \therefore S=0
    よって,
    \sum_{k=1}^{2016}\left\{k\sin{\frac{\left(2k-1\right)\pi}{2016}}\sin{\frac{\pi}{2016}}\right\}=-1008\cos{2\pi}=-1008……(答)

2017年早稲田大学商学部|過去問徹底研究 大問2

2019.09.27

方針の立て方 (1) ガウス記号に関する重要な性質:を使うだけ.ガウス記号は文系数学頻出のテーマのため,この重要な性質とともに覚えておこう. (2) 前問を一般化したもの(前問は本問ののパターンである)であることに気付きたい.入試数学では,まず具体的なパターンでやらせ,その次の問題で一般化するという

  • …続きを読む
  • 方針の立て方

    (1)
    ガウス記号に関する重要な性質:\left[x\right]=n\Leftrightarrow n\leqq x<n+1を使うだけ.ガウス記号は文系数学頻出のテーマのため,この重要な性質とともに覚えておこう.

    (2)
    前問を一般化したもの(前問は本問のp_n=2のパターンである)であることに気付きたい.入試数学では,まず具体的なパターンでやらせ,その次の問題で一般化するという出題形式が多い.一般化されると途端に難しくなったと感じがちだが,前問と同じように処理していけばよい.つまり,\left[x\right]=n\Leftrightarrow n\leqq x<n+1を使って変形し,その範囲で{p_n}^2の倍数であるnを拾い上げていけばよい.ただし,前問ではnに制限がないが,本問では制限がついてしまっていることに注意.

    (3)
    前問の議論で,p_n=1p_n=2,34\leqq p_n\leqq99p_n=100で場合分けしたので,本問でもこれと同様に場合分けして考えればよい.

    解答例

    (1)
    \left[\sqrt[3]{n}\right]=2\Leftrightarrow2\leqq\sqrt[3]{n}<3\Leftrightarrow2^3\leqq n<3^3\Leftrightarrow8\leqq n<27
    である.この範囲で4の倍数となるものが答えである.
    \therefore n=8,12,16,20,24……(答)

    (2)
    nの値に制限がない場合,
    \left[\sqrt[3]{n}\right]=p_n\Leftrightarrow p_n\leqq\sqrt[3]{n}<p_n+1\Leftrightarrow{p_n}^3\leqq n<\left(p_n+1\right)^3\Leftrightarrow{p_n}^3\leqq n<{p_n}^3+3{p_n}^2+3p_n+1
    となる.この範囲に,{p_n}^2の倍数であるnは,
    n={p_n}^3,{p_n}^3+{p_n}^2,{p_n}^3+2{p_n}^2,\cdots\cdots,{p_n}^3+k{p_n}^2
    k+1個ある.ここで,kは,{p_n}^3+k{p_n}^2\leqq{p_n}^3+3{p_n}^2+3p_n\Leftrightarrow k\leqq3+\frac{3}{p_n}を満たす最大の自然数である.つまり,p_n=1ならばk=6,p_n=2,3ならばk=4,p_n\geqq4ならばk=3である.
    今はn\leqq{10}^6という制限があるが,{p_n}^3+3{p_n}^2+3p_n+1\leqq{10}^6\Leftrightarrow\left(p_n+1\right)^3\leqq{10}^6\Leftrightarrow p_n\leqq99までは上記の議論が使える.
    さて,n\leqq{10}^6よりp_n\leqq\left[\sqrt[3]{{10}^6}\right]=\left[100\right]=100であるから,p_n=100のときを別個で考えれば必要十分.
    p_n=100となるnn={10}^6のみであるから,{p_n}^2={100}^2の倍数であるnn={10}^6の1個のみ.
    よって,求める個数は,
    \left(6+1\right)+\left(4+1\right)+\left(4+1\right)+\left(3+1\right)\cdot96+1=402個……(答)

    (3)
    前問の議論より,
    (Ⅰ)p_n=1のとき
    {p_n}^2=1の倍数であるnは,
    n={p_n}^3,{p_n}^3+{p_n}^2,{p_n}^3+2{p_n}^2,\cdots\cdots,{p_n}^3+6{p_n}^2=1,2,3,4,5,6,7
    である.これらをp_n\left(p_n+1\right)=2で割った余りは,順番に1,0,1,0,1,0,1である.
    (Ⅱ)p_n=2のとき
    {p_n}^2=4の倍数であるnは,
    n={p_n}^3,{p_n}^3+{p_n}^2,{p_n}^3+2{p_n}^2,\cdots\cdots,{p_n}^3+4{p_n}^2=8,12,16,20,24
    である.これらをp_n\left(p_n+1\right)=6で割った余りは,順番に2,0,4,2,0である.
    (Ⅲ)p_n=3のとき
    {p_n}^2=9の倍数であるnは,
    n={p_n}^3,{p_n}^3+{p_n}^2,{p_n}^3+2{p_n}^2,\cdots\cdots,{p_n}^3+4{p_n}^2=27,36,45,54,63
    である.これらをp_n\left(p_n+1\right)=12で割った余りは,順番に3,0,9,6,3である.
    (Ⅳ)4\leqq p_n\leqq99のとき
    {p_n}^2の倍数であるnは,
    n={p_n}^3,{p_n}^3+{p_n}^2,{p_n}^3+2{p_n}^2,{p_n}^3+3{p_n}^2
    である.これらをp_n\left(p_n+1\right)で割った余りは,順番にp_n,0,{p_n}^2,{p_n}^2-p_nである.
    (Ⅴ)p_n=100のとき
    {p_n}^2={100}^2の倍数であるnは,
    n={10}^6
    である.これをp_n\left(p_n+1\right)=10100で割った余りは,100である.
    以上,(Ⅰ)~(Ⅴ)より,
    S=\left(1+0+1+0+1+0+1\right)+\left(2+0+4+2+0\right)+\left(3+0+9+6+3\right)+\sum_{p_n=4}^{99}\left\{p_n+0+{p_n}^2+\left({p_n}^2-p_n\right)\right\}+100=656805……(答)

2017年早稲田大学商学部|数学過去問徹底研究 大問3

2019.09.27

方針の立て方 これはチェビシェフ多項式を元に作られた問題である. チェビシェフ多項式は難関大学での三角関数の問題としてよく出される(高等的な数学の知識を必要とせず考察できる)題材であるため,各自調べて,典型問題化しておくと良いだろう. (1) の定義の仕方はでなされているため,をとを用いて表すことを

  • …続きを読む
  • 方針の立て方

    これはチェビシェフ多項式を元に作られた問題である.
    チェビシェフ多項式は難関大学での三角関数の問題としてよく出される(高等的な数学の知識を必要とせず考察できる)題材であるため,各自調べて,典型問題化しておくと良いだろう.

    (1)
    P_n\left(x\right)の定義の仕方はP_n\left(\cos{\theta}\right)でなされているため,P_{n+1}\left(\cos{\theta}\right)P_n\left(\cos{\theta}\right)P_{n-1}\left(\cos{\theta}\right)を用いて表すことを考える.すると,\cos{\left(n+1\right)\theta}\cos{n\theta}\cos{\left(n-1\right)\theta}を用いて表すという問題に帰着する.ただし,最終的にはxに戻さねばならないため,他に使えるのは\cos{\theta}のみである.そのため,途中で出てくる\sin{n\theta}\sin{\theta}\cos{\theta}のみの式となるように変形する.

    (2)
    試しに小さいnをいくつか考えてみるとよい.すると答えの予想がつく.後は前問で漸化式を求めさせていることと,自然数に関する議論であることから,数学的帰納法を用いて,予想が正しいことを示せばよい.

    (3)
    前問ではP_n\left(x\right)x^nのみを特別視して考えていたため,本問もx^nのみを特別視して考えればよいのではと考える.x^n以外の項の解析は難しいが,問題で求められているのが一の位の数字のみであるため,十の位以降に押しやられるのでは直観し,それを示していけばよい.

    解答例

    (1)
    加法定理より,\cos{\left(n+1\right)\theta}=\cos{n\theta}\cos{\theta}-\sin{n\theta}\sin{\theta}
    和積の公式より,
    \sin{n\theta}\sin{\theta}=\frac{1}{2}\left\{\cos{\left(n-1\right)\theta}-\cos{\left(n+1\right)\theta}\right\}
    \therefore\cos{\left(n+1\right)\theta}=\cos{\theta}\cos{n\theta}-\frac{1}{2}\left\{\cos{\left(n-1\right)\theta}-\cos{\left(n+1\right)\theta}\right\}
    整理すると,
    \cos{\left(n+1\right)\theta}=2\cos{\theta}\cos{n\theta}-\cos{\left(n-1\right)\theta}
    \cos{\left(n+1\right)\theta}=P_{n+1}\left(\cos{\theta}\right),\cos{n\theta}=P_n\left(\cos{\theta}\right),\cos{\left(n-1\right)\theta}=P_{n-1}\left(\cos{\theta}\right)であるから,\cos{\theta}=xとすることで,
    P_{n+1}\left(x\right)=2xP_n\left(x\right)-P_{n-1}\left(x\right)……(答)

    (2)
    P_n\left(x\right)x^nの係数が2^{n-1}である(以下ではこの命題を(*)と表す)ことを数学的帰納法で示す.
    n=1のとき,P_1\left(\cos{\theta}\right)=\cos{\theta}よりP_n\left(x\right)=xであるから,(*)は成り立っている.
    n=2のとき,P_2\left(\cos{\theta}\right)=\cos{2\theta}=2\cos^2{\theta}-1よりP_2\left(x\right)=2x^2-1であるから,(*)は成り立っている.
    ここで,n=k,k+1のときの(*)の成立を仮定する.つまり,適当なk-1次以下の多項式Q\left(x\right)と,k次以下の多項式R\left(x\right)とを用いて,
    P_k\left(x\right)=2^{k-1}x^k+Q\left(x\right)
    P_{k+1}\left(x\right)=2^kx^{k+1}+R\left(x\right)
    と書けると仮定する.
    すると,
    P_{k+2}\left(x\right)=2xP_{k+1}\left(x\right)-P_k\left(x\right)=2x\left\{2^kx^{k+1}+R\left(x\right)\right\}-\left\{2^{k-1}x^k+Q\left(x\right)\right\}=2^{k+1}x^{k+2}+\left\{2xR\left(x\right)-2^{k-1}x^k-Q\left(x\right)\right\}
    となる(第一のイコールで(1)で求めた漸化式を,第二のイコールで帰納法の仮定をそれぞれ用いた).
    2xR\left(x\right)-2^{k-1}x^k-Q\left(x\right)は,Q\left(x\right)が高々k-1次,R\left(x\right)が高々k次であるから,高々k+1次である.
    よって,P_{k+2}\left(x\right)x^{k+2}の係数は2^{\left(k+2\right)-1}であると言える.これは,(*)のn=k+2での成立に他ならない.
    以上,数学的帰納法により(*)が示された. 証明終了.
    以上より,求める係数は2^{n-1}……(答)

    (3)
    前問の結果より,
    P_{500}\left(\mathrm{cos}{\theta}\right)=\cos{500\theta}\cos^{500}{\theta}の係数は2^{499}
    よって,\cos{\theta}の499次以下の多項式S\left(\cos{\theta}\right)を用いて,\cos{500\theta}=2^{499}\cos^{500}{\theta}+S\left(\cos{\theta}\right)と表せる.
    よって,\cos{\theta}の999次以下の多項式T\left(\cos{\theta}\right)を用いれば,\cos^2{\left(500\theta\right)}=2^{998}\cos^{1000}{\theta}+T\left(\cos{\theta}\right)と表せる.
    \therefore{10}^{1000}\cos^2{\left(500\theta\right)}={10}^{1000}\cdot2^{998}\cos^{1000}{\theta}+{10}^{1000}T\left(\cos{\theta}\right)
    ここで,{10}^{1000}\cos^{999}{\theta}={10}^{1000}\left(\frac{1}{10}\right)^{999}=10であるから,\cos{\theta}の高々999次の多項式であるT\left(\cos{\theta}\right){10}^{1000}をかけた{10}^{1000}T\left(\cos{\theta}\right)は一の位の数に寄与しない.
    よって,{10}^{1000}\cos^2{\left(500\theta\right)}の一の位の数は{10}^{1000}\cdot2^{998}\cos^{1000}{\theta}={10}^{1000}\cdot2^{998}\left(\frac{1}{10}\right)^{1000}=2^{998}と等しくなる.

    n 1 2 3 4 5 6 7 8 9 10 11 12 13 \cdots
    2^nの一の位の数 2 4 8 6 2 4 8 6 2 4 8 6 2 \cdots

    上表のように,2^nの一の位の数は2,4,8,6が繰り返される.これを用いると2^{998}の一の位の数は4と分かる.
    よって,求める数は4……(答)

2017年早稲田大学商学部|過去問徹底研究 大問1

2019.09.25

方針の立て方 (1) 絶対値問題の典型的解法,つまり,場合分けをして絶対値記号を外すことを試みる.その後は二次関数の最大最小問題と同じように,区間とグラフの位置関係で場合分けを行う.場合分けのパターンが多いが,対称性があるため⑤~⑦は実質的に計算しなくても答えは分かる.後はと直線を図示して面積を求め

  • …続きを読む
  • 方針の立て方
    (1)
    絶対値問題の典型的解法,つまり,場合分けをして絶対値記号を外すことを試みる.その後は二次関数の最大最小問題と同じように,区間とグラフの位置関係で場合分けを行う.場合分けのパターンが多いが,対称性があるため⑤~⑦は実質的に計算しなくても答えは分かる.後はf\left(x\right)と直線y=1を図示して面積を求めるのみ.

    (2)
    4次方程式の解析は難しいため,次数を下げることを考える.そこで「x=\alphaは代数方程式P\left(x\right)=0の解である」⇔「多項式P\left(x\right)x-\alphaを因数にもつ」という解の重要性質を利用すると考えよう.この重要性質を使えば,2次方程式の解析問題に帰着させられる.後は,実数解なのか虚数解なのかで場合分けをして考えればよい.

    (3)
    長さの問題であるため,座標系を導入すると考えやすくなると考える.「座標は長さの問題のときに強く,角度の問題のときには弱い」というのは覚えておこう.後は問題の状況を丁寧に書き下していけばよい.平方完成を用いた最小値問題は頻出問題なのでおさえておくこと.

    (4)
    {10}^{-k}2^n{10}^{100}3^{-n}のどちらが\mathrm{max}\left\{{10}^{-k}2^n,{10}^{100}3^{-n}\right\}の値になるかを考えよう(絶対値記号と同様に\mathrm{max}もそのままでは扱いにくいので外すことをまず考える).「全ての整数nに対して」となっているので,まずはkを固定してnのみを変数扱いして考えよう.{10}^{-k}2^n{10}^{100}3^{-n}はそれぞれ単調増加,単調減少であるため,最初は{10}^{-k}2^n<{10}^{100}3^{-n}となるだろうと分かる.そこで{10}^{-k}2^n={10}^{100}3^{-n}となるnを考える.後は十分条件を考え,そのあとで,必要性を考える.つまり,k\leqq63 \Rightarrow \mathrm{max}\left\{{10}^{-k}2^n,{10}^{100}3^{-n}\right\}\geqq1は言えるが,ではkをこれより大きくした場合はどうか,具体的にはk=64,65,66,\cdots\cdotsはどうかを考える必要があると考える.するとk=64で(*)を満たさないことが確認できるので,答えは63と分かる.

    解答例
    (1)
    ア:\frac{5}{3}
    (2)
    イ:-3
    ウ:-6
    (3)
    エ:\frac{6}{5}
    (4)
    オ:63

    解説
    (1)
    g\left(t\right)=\left|\left|t\right|-1\right|とおくと,

    ①のとき(x+1\leqq-1\Leftrightarrow x\leqq-2)
    f\left(x\right)=\frac{1}{2}\int_{x-1}^{x+1}\left(-t-1\right)dt=\frac{1}{2}\left[-\frac{1}{2}t^2-t\right]_{x-1}^{x+1}=-x-1
    ②のとき(-1\leqq x+1\leqq0\Leftrightarrow-2\leqq x\leqq-1)
    f\left(x\right)=\frac{1}{2}\int_{x-1}^{-1}\left(-t-1\right)dt+\frac{1}{2}\int_{-1}^{x+1}\left(t+1\right)dt=\frac{1}{2}\left[-\frac{1}{2}t^2-t\right]_{x-1}^{-1}+\frac{1}{2}\left[\frac{1}{2}t^2+t\right]_{-1}^{x+1}=\frac{1}{2}\left(x^2+2x+2\right)
    ③のとき(0\leqq x+1\leqq1\Leftrightarrow-1\leqq x\leqq0)
    f\left(x\right)=\frac{1}{2}\int_{x-1}^{-1}\left(-t-1\right)dt+\frac{1}{2}\int_{-1}^{0}\left(t+1\right)dt+\frac{1}{2}\int_{0}^{x+1}\left(-t+1\right)dt=\frac{1}{2}\left[-\frac{1}{2}t^2-t\right]_{x-1}^{-1}+\frac{1}{2}\left[\frac{1}{2}t^2+t\right]_{-1}^0+\frac{1}{2}\left[-\frac{1}{2}t^2+t\right]_0^{x+1}=\frac{1}{2}
    ④のとき(x+1=1\Leftrightarrow x=0)
    f\left(x\right)=\frac{1}{2}\int_{-1}^{0}\left(t+1\right)dt+\frac{1}{2}\int_{0}^{1}\left(-t+1\right)dt=\frac{1}{2}\left[\frac{1}{2}t^2+t\right]_{-1}^0+\frac{1}{2}\left[-\frac{1}{2}t^2+t\right]_0^1=\frac{1}{2}
    ⑤のとき(-1\leqq x -1\leqq 0 \Leftrightarrow 0\leqq x\leqq1)
    f\left(x\right)=\frac{1}{2}\int_{x-1}^{0}\left(t+1\right)dt+\frac{1}{2}\int_{0}^{1}\left(-t+1\right)dt+\frac{1}{2}\int_{1}^{x+1}\left(t-1\right)dt=\frac{1}{2}\left[\frac{1}{2}t^2+t\right]_{x-1}^0+\frac{1}{2}\left[-\frac{1}{2}t^2+t\right]_0^1+\frac{1}{2}\left[\frac{1}{2}t^2-t\right]_1^{x+1}=\frac{1}{2}
    ⑥のとき(0\leqq x-1\leqq1\Leftrightarrow1\leqq x\leqq2)
    f\left(x\right)=\frac{1}{2}\int_{x-1}^{1}\left(-t+1\right)dt+\frac{1}{2}\int_{1}^{x+1}\left(t-1\right)dt=\frac{1}{2}\left[-\frac{1}{2}t^2+t\right]_{x-1}^1+\frac{1}{2}\left[\frac{1}{2}t^2-t\right]_1^{x+1}=\frac{1}{2}\left(x^2-2x+2\right)
    ⑦のとき(1\leqq x-1\Leftrightarrow2\leqq x)
    f\left(x\right)=\frac{1}{2}\int_{x-1}^{x+1}\left(t-1\right)dt=\frac{1}{2}\left[\frac{1}{2}t^2-t\right]_{x-1}^{x+1}=x-1
    まとめると,
    f\left(x\right)=\begin{cases} -x-1 \left(x\leqq-2\right) \\ \frac{1}{2}\left(x^2+2x+2\right) \left(-2\leqq x\leqq-1\right) \\ \frac{1}{2} \left(-1\leqq x\leqq1\right) \\ \frac{1}{2}\left(x^2-2x+2\right) \left(1\leqq x\leqq2\right) \\ x-1 \left(2\leqq x\right) \end{cases}
    図示すると,

    よって,求める面積は,y軸での対称性より,
    2\left\{\frac{1}{2}\cdot1+\int_{1}^{2}\left\{1-\frac{1}{2}\left(x^2-2x+2\right)\right\}dx\right\}=1+2\left[-\frac{1}{6}x^3+\frac{1}{2}x^2\right]_1^2=\frac{5}{3}……(答)

    (2)
    実数解が1と3であることから,他の二解をx=\alpha,\betaとして,
    x^4+ax^3+bx^2+cx+3=\left(x-1\right)\left(x-3\right)\left(x-\alpha\right)\left(x-\beta\right)=x^4-\left(\alpha+\beta+4\right)x^3+\left(4\alpha+4\beta+\alpha\beta+3\right)x^2-\left(4\alpha\beta+3\alpha+3\beta\right)x+3\alpha\beta
    と書ける.係数比較すると,
    \begin{cases} a=-\left(\alpha+\beta+4\right) \\ b=4\alpha+4\beta+\alpha\beta+3 \\ c=-\left(4\alpha\beta+3\alpha+3\beta\right) \\ 3=3\alpha\beta \end{cases}\Leftrightarrow\begin{cases} \alpha+\beta=-a-4 \\ 4\alpha+4\beta=b-4 \\ 3\alpha+3\beta=-c-4 \\ \alpha\beta=1 \end{cases}
    となる.
    次に,2次方程式\left(x-\alpha\right)\left(x-\beta\right)=0\Leftrightarrow x^2-\left(\alpha+\beta\right)x+\alpha\beta=0について考える.この方程式の解が1か3,或いは虚数解であれば,4次方程式x^4+ax^3+bx^2+cx+3=0の実数解が1と3のみとなる.
    (Ⅰ)\alpha,\betaが実数のとき
    まず,判別式が非負となる必要があるので,\left(\alpha+\beta\right)^2-4\cdot1\cdot\alpha\beta\geqq0\Leftrightarrow\left(\alpha-\beta\right)^2\geqq 0が必要である.
    このもとで,2次方程式x^2-\left(\alpha+\beta\right)x+\alpha\beta=0の解が1か3のみとなるには,\left(\alpha,\beta\right)=\left(1,1\right),\left(1,3\right),\left(3,1\right),\left(3,3\right)なら必要十分(これらは全て\left(\alpha-\beta\right)^2\geqq0を満たす).この内,(*)式に抵触しないのは,\left(\alpha,\beta\right)=\left(1,1\right)のみである.このとき,(*)の第一式より,a=-6となる.
    (Ⅱ)\alpha,\betaが虚数のとき
    まず,判別式が負となる必要があるので,\left(\alpha+\beta\right)^2-4\cdot1\cdot\alpha\beta<0\Leftrightarrow\left(\alpha-\beta\right)^2<0が必要である.
    \alpha,\betaが虚数ならば,\alpha,\betaの値によらず,2次方程式x^2-\left(\alpha+\beta\right)x+\alpha\beta=0の解は虚数となる.
    (*)を利用すれば,\left(\alpha-\beta\right)^2<0\Leftrightarrow\left(\alpha+\beta\right)^2-4\alpha\beta<0\Leftrightarrow\left(-a-4\right)^2<4\Leftrightarrow-6<a<-2
    以上(Ⅰ)と(Ⅱ)より,4次方程式x^4+ax^3+bx^2+cx+3=0の実数解が1と3のみとなるaの範囲は-6\leqq a<-2である.
    aは整数なので,求める最大値は-3,最小値は-6である.……(答)

    (3)
    {\mathrm{AB}}^2+{\mathrm{BC}}^2={\mathrm{CA}}^2より,三角形\mathrm{ABC}\angle\mathrm{B}={90}^\circの直角三角形である.

    そこで,点\mathrm{B}を原点として,左図のように三角形\mathrm{ABC}xy平面上にのせる.
    内部の点\mathrm{O}の座標を左図のように\left(X,Y\right)とおく.点\mathrm{O}は三角形\mathrm{ABC}の内部の点であるので,
    \begin{cases} 0\leqq X \\ 0\leqq Y \\ Y\leqq-\frac{3}{4}X+3 \end{cases}……(*)
    を満たす必要がある.
    このもとで,
    {\mathrm{OP}}^2=X^2,{\mathrm{OQ}}^2=Y^2
    である.更に点と直線の距離の公式より,
    {\mathrm{OR}}^2=\frac{\left(3X+4Y-12\right)^2}{3^2+4^2}=\frac{9X^2+16Y^2-72X-96Y+24XY+144}{25}
    である.
    \therefore{\mathrm{OP}}^2+{\mathrm{OQ}}^2+{\mathrm{OR}}^2=X^2+Y^2+\frac{9X^2+16Y^2-72X-96Y+24XY+144}{25}=\frac{1}{25}\left\{34\left(X+\frac{6Y-18}{17}\right)^2+\frac{1}{17}\left(25Y-24\right)^2+72\right\}
    よって,
    \begin{cases} X+\frac{6Y-18}{17}=0 \\ 25Y-24=0 \end{cases}\Leftrightarrow\begin{cases} X=\frac{18}{25} \\ Y=\frac{24}{25} \end{cases}\mathrm{OP}^2+\mathrm{OQ}^2+\mathrm{OR}^2は最小となる.なお,\begin{cases} X=\frac{18}{25} \\ Y=\frac{24}{25} \end{cases}は(*)を満たす.
    このとき,
    \mathrm{OR}=\frac{\left|3\cdot\frac{18}{25}+4\cdot\frac{24}{25}-12\right|}{5}=\frac{6}{5}……(答)

    (4)
    kを固定して,{10}^{-k}2^n={10}^{100}3^{-n}となるnについて考えると,{10}^{-k}2^n={10}^{100}3^{-n}\Leftrightarrow6^n={10}^{100+k}より,n=\log_6{{10}^{100+k}}=\left(100+k\right)\log_6{10}=\frac{100+k}{\log_{10}{6}}=\frac{100+k}{\log_{10}{2}+\log_{10}{3}}
    {10}^{-k}2^nnについて単調増加であり,{10}^{100}3^{-n}は単調減少であるから,\mathrm{max}\left\{{10}^{-k}2^n,{10}^{100}3^{-n}\right\}の最小値は,{10}^{100}3^{-\frac{100+k}{\log_{10}{2}+\log_{10}{3}}}以上である.
    よって,\mathrm{max}\left\{{10}^{-k}2^n,{10}^{100}3^{-n}\right\}\geqq 1を満たすには,
    {10}^{100}3^{-\frac{100+k}{{\mathrm{log}}_{\mathrm{10}}{\mathrm{2}}\mathrm{+} {\mathrm{log}}_{\mathrm{10}}{\mathrm{3}}}}\geqq1\Leftrightarrow{10}^{100}\geqq\mathrm{3}^\frac{100+k}{{\mathrm{log}}_{\mathrm{10}}{\mathrm{2}}\mathrm{+} {\mathrm{log}}_{\mathrm{10}}{\mathrm{3}}}\Leftrightarrow100\geqq\frac{100+k}{{\mathrm{log}}_{\mathrm{10}}{\mathrm{2}}\mathrm{+} {\mathrm{log}}_{\mathrm{10}}{\mathrm{3}}}{\mathrm{log}}_{\mathrm{10}}{\mathrm{3}}\Leftrightarrow k\leqq100\frac{{\mathrm{log}}_{\mathrm{10}}{\mathrm{2}}}{{\mathrm{log}}_{\mathrm{10}}{\mathrm{3}}}
    であれば十分.
    100\frac{{\mathrm{log}}_{\mathrm{10}}{\mathrm{2}}}{{\mathrm{log}}_{\mathrm{10}}{\mathrm{3}}}>100\frac{0.301}{0.4772}=63.07,100\frac{{\mathrm{log}}_{\mathrm{10}}{\mathrm{2}}}{{\mathrm{log}}_{\mathrm{10}}{\mathrm{3}}}<100\frac{0.3011}{0.4771}=63.11kが整数であることから,
    k\leqq63であれば十分.
    ここで,k=64のときを考える.
    \frac{100+k}{\log_{10}{2}+\log_{10}{3}}=\frac{164}{\log_{10}{2}+\log_{10}{3}}であり\frac{164}{0.3011+0.4772}<\frac{164}{\log_{10}{2}+\log_{10}{3}}<\frac{164}{0.301+0.4771}\Leftrightarrow210.71\mathrm{\cdots\cdots}<\frac{164}{\log_{10}{2}+\log_{10}{3}}<210.76\mathrm{\cdots\cdots}より,\mathrm{max}\left\{{10}^{-64}2^n,{10}^{100}3^{-n}\right\}の最小値は,{10}^{100}3^{-210}{10}^{-64}2^{211}である.
    \log_{10}{\left({10}^{100}3^{-210}\right)}=100-210\log_{10}{3}<100-210\cdot0.4771=-0.191
    \log_{10}{\left({10}^{-64}2^{211}\right)}=-64+211\log_{10}{2}<-64+211\cdot0.3011=-0.4679
    より,{10}^{100}3^{-210}<{10}^{-0.191}<{10}^0=1,{10}^{-64}2^{211}<{10}^{-0.4679}<{10}^0=1であるから,k=64のとき条件(*)は満たされない.
    よって求めるkの最大値は63……(答)

2018年早稲田大学商学部|過去問徹底研究 大問3

2019.09.24

方針の立て方 (1) 実際にを求めていくことで解答を得られる. (2) 前問での議論で,には周期性があることが分かる.更に,大事なのはとのなす角であることも分かるだろう(もし前問の議論だけでは方針を得られない場合には,他の具体的な組み合わせで考えてみると良い).そこで,とのなす角で場合分けをして議論

  • …続きを読む
  • 方針の立て方
    (1)
    実際に\mathrm{A}_nを求めていくことで解答を得られる.

    (2)
    前問での議論で,\mathrm{A}_nには周期性があることが分かる.更に,大事なのは\mathrm{O}\mathrm{A}_1\mathrm{O}\mathrm{A}_2のなす角であることも分かるだろう(もし前問の議論だけでは方針を得られない場合には,他の具体的な組み合わせで考えてみると良い).そこで,\mathrm{O}\mathrm{A}_1\mathrm{O}\mathrm{A}_2のなす角で場合分けをして議論していけば良いと判断する.

    解答例
    (1)

    (ⅰ)と(ⅱ)に従って\mathrm{A}_nを求めていくと,上図のようになる.
    上図より\mathrm{A}_{15}=\mathrm{P}_3であるから,求めるkk=3……(答)

    (2)
    \mathrm{A}_n=\mathrm{P}_kとして,前問の議論(\left(\mathrm{A}_1,\mathrm{A}_2\right)=\left(\mathrm{P}_1,\mathrm{P}_2\right)のとき)をまとめると,下表のようになる.

    n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 \cdots
    k 1 2 9 4 5 3 7 8 6 1 2 9 4 5 3 \cdots

    これより,kの値は1,2,9,4,5,3,7,8,6という周期9の並びを繰り返すことが分かる.
    \mathrm{A}_n=\mathrm{P}_1となるnが存在するため\left(\mathrm{A}_1,\mathrm{A}_2\right)=\left(\mathrm{P}_1,\mathrm{P}_2\right)は題意を満たさない.
    以下,\left(\mathrm{A}_1,\mathrm{A}_2\right)=\left(\mathrm{P}_i,\mathrm{P}_j\right)として,i<jのみを考える.更に\mathrm{O}\mathrm{P}_i\mathrm{O}\mathrm{P}_jのなす角の内,小さい方を\theta_{ij}と表す.
    (Ⅰ)\theta_{ij}=\frac{2\pi}{9}となるi,jのとき
    実際に\mathrm{A}_nを求めていくと,\left(\mathrm{A}_1,\mathrm{A}_2\right)=\left(\mathrm{P}_1,\mathrm{P}_2\right)のときのようにkの値は周期9の並びを繰り返し,kは1から9の全ての値をとる.よって,題意を満たさない.
    (Ⅱ)\theta_{ij}=\frac{4\pi}{9}となるi,jのとき
    実際に\mathrm{A}_nを求めていく.例えば\left(\mathrm{A}_1,\mathrm{A}_2\right)=\left(\mathrm{P}_1,\mathrm{P}_3\right)の場合,

    上図のようになる.
    \mathrm{A}_n=\mathrm{P}_kとしてまとめると,下表のようになる.

    n 1 2 3 4 5 6 7 8 9 10 11 12 \cdots
    k 1 3 8 7 9 5 4 6 2 1 3 8 \cdots

    これより,kの値は1,3,8,7,9,5,4,6,2という周期9の並びを繰り返すことが分かる.
    \mathrm{A}_n=\mathrm{P}_1となるnが存在するため\left(\mathrm{A}_1,\mathrm{A}_2\right)=\left(\mathrm{P}_1,\mathrm{P}_3\right)は題意を満たさない.また,他のi,jについても同様に題意を満たさない.
    (Ⅲ)\theta_{ij}=\frac{6\pi}{9}となるi,jのとき
    実際に\mathrm{A}_nを求めていく.例えば\left(\mathrm{A}_1,\mathrm{A}_2\right)=\left(\mathrm{P}_1,\mathrm{P}_4\right)の場合,

    上図のようになる.
    \mathrm{A}_n=\mathrm{P}_kとしてまとめると,下表のようになる.

    n 1 2 3 4 5 6 \cdots
    k 1 4 7 1 4 7 \cdots

    これより,kの値は1,4,7という周期3の並びを繰り返すことが分かる.
    \mathrm{A}_n=\mathrm{P}_1となるnが存在しないため\left(\mathrm{A}_1,\mathrm{A}_2\right)=\left(\mathrm{P}_1,\mathrm{P}_4\right)は題意を満たす.また,他のi,jについても同様に題意を満たす.
    \theta_{ij}=\frac{6\pi}{9}となるi,jの組み合わせは\left(i,j\right)=\left(2,5\right),\left(2,8\right),\left(3,6\right),\left(3,9\right),\left(5,8\right),\left(6,9\right)であり,これら6組は題意を満たす.
    (Ⅳ)\theta_{ij}=\frac{8\pi}{9}となるi,jのとき
    実際に\mathrm{A}_nを求めていく.例えば\left(\mathrm{A}_1,\mathrm{A}_2\right)=\left(\mathrm{P}_1,\mathrm{P}_5\right)の場合,

    n 1 2 3 4 5 6 7 8 9 10 11 12 \cdots
    k 1 5 9 4 8 3 7 2 6 1 5 9 \cdots

    これより,kの値は1,5,9,4,8,3,7,2,6という周期9の並びを繰り返すことが分かる.
    \mathrm{A}_n=\mathrm{P}_1となるnが存在するため\left(\mathrm{A}_1,\mathrm{A}_2\right)=\left(\mathrm{P}_1,\mathrm{P}_5\right)は題意を満たさない.また,他のi,jについても同様に題意を満たさない.
    以上,(Ⅰ)~(Ⅳ)より,題意を満たすi,jの組み合わせはi>jの範囲でも題意を満たすi,jの組み合わせは6組あるので,求める個数は6+6=12個……(答)

2018年早稲田大学商学部|過去問徹底研究 大問2

2019.09.24

方針の立て方 (1) 試しにを書き下すと解答が得られる.このときに分母を2で割った値が大事になることや,分母が奇数のときにはもう議論を続ける必要がないことが分かるだろう. (2) 前問の議論を一般化して考える.前問の議論で,分母が偶数であるときには,その分母の数字を2で割った値が大事になり,分母が奇

  • …続きを読む
  • 方針の立て方
    (1)
    試しにa_1\left(\frac{i}{12}\right),a_2\left(\frac{i}{12}\right),a_3\left(\frac{i}{12}\right),\cdots\cdotsを書き下すと解答が得られる.このときに分母を2で割った値が大事になることや,分母が奇数のときにはもう議論を続ける必要がないことが分かるだろう.

    (2)
    前問の議論を一般化して考える.前問の議論で,分母が偶数であるときには,その分母の数字を2で割った値が大事になり,分母が奇数になったときに議論が終了することから,xに素因数2が何個含まれているかがカギになると見抜きたい.後は前問のように場合分けして考えていくことを考えれば,解答が得られる.

    解答例
    (1)
    i=1,2,\cdots\cdots,11として,
    a_1\left(\frac{i}{12}\right)=\frac{i}{12}\neq0


    ここで,a_4\left(\frac{i}{12}\right)について考えると,

    となる.ここで,\frac{2i}{3},\frac{2\left(i-3\right)}{3},\frac{2\left(i-6\right)}{3},\frac{2\left(i-9\right)}{3}は全て整数とはならない.一方で\left[\frac{2i}{3}\right],\left[\frac{2\left(i-3\right)}{3}\right],\left[\frac{2\left(i-6\right)}{3}\right],\left[\frac{2\left(i-9\right)}{3}\right]は全て整数である.よって,\frac{2i}{3}-\left[\frac{2i}{3}\right],\frac{2\left(i-3\right)}{3}-\left[\frac{2\left(i-3\right)}{3}\right],\frac{2\left(i-6\right)}{3}-\left[\frac{2\left(i-6\right)}{3}\right],\frac{2\left(i-9\right)}{3}-\left[\frac{2\left(i-9\right)}{3}\right]は全て0とはならない.
    同様に,a_5\left(\frac{i}{12}\right),a_6\left(\frac{i}{12}\right),\cdots\cdotsでもi=1,2,4,5,7,8,10,11のときは0とはならない.
    よって,i=3,6,9のみが(*)を満たす.
    \therefore S_{12}=\left\{\frac{1}{4},\frac{1}{2},\frac{3}{4}\right\}……(答)

    (2)
    前問の議論を応用すれば,xが有理数で分母が偶数(ある自然数mを用いて2mと表す)であるときa_2\left(x\right)i=mで0となる.その後はi=1,2,\cdots\cdots,m-1i=m+1,m+2,\cdots\cdots,n-1で場合分けして同様の議論が繰り返せる.この議論は,a_k\left(x\right)の分母が奇数となるまで続く.
    よって,xが有理数で分母を素因数分解したときに2^l(lは0以上の整数)を含む場合,a_2\left(x\right)=0となるiは1個あり,a_3\left(x\right)=0となるiは(a_2\left(x\right)=0となるiを除くと)2個あり,a_4\left(x\right)=0となるiは(a_3\left(x\right)=0となるiを除くと)4個あり,……,a_{l+1}\left(x\right)=0となるiは(a_l\left(x\right)=0となるiを除くと)2^{l-1}個ある.なお,a_{l+2}\left(x\right)=0となるia_{l+1}\left(x\right)=0となるiを除くと存在しない.
    よって,(*)を満たすi\sum_{k=0}^{k=l-1}2^k=2^l-1個存在する.
    そして(*)を満たす有理数は,\frac{i}{2^l}(i=1,2,\cdots\cdots,2^l-1)である.
    よって,Tの要素の個数は,1から2018の中で素因数に2を最も多く含むもののを考え,その数の素因数2の個数をm個とすれば,2^m-1個である.
    2^m\leqq2018を満たす最大のmm=10である.
    よって求める個数は,
    2^{10}-1=1023個……(答)


  • 偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 早稲田校舎 : 〒162-0045
    東京都新宿区馬場下町9-7 ハイライフホーム早稲田駅前ビル4階
    TEL: 03-6884-7991
    営業時間: 月〜土 9:00-21:30 
  • Facebook Twitter
    Page Top

Copyright © BETELGEUSE corporation All Rights Reserved.