偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 資料請求
  • 資料請求
  • カウンセリング
  • お電話
早稲田商学2017

2017年早稲田大学商学部|過去問徹底研究 大問2

偏差値30からの早稲田慶應対策専門個別指導塾
HIRO ACADEMIA presents

方針の立て方

(1)
ガウス記号に関する重要な性質:\left[x\right]=n\Leftrightarrow n\leqq x<n+1を使うだけ.ガウス記号は文系数学頻出のテーマのため,この重要な性質とともに覚えておこう.

(2)
前問を一般化したもの(前問は本問のp_n=2のパターンである)であることに気付きたい.入試数学では,まず具体的なパターンでやらせ,その次の問題で一般化するという出題形式が多い.一般化されると途端に難しくなったと感じがちだが,前問と同じように処理していけばよい.つまり,\left[x\right]=n\Leftrightarrow n\leqq x<n+1を使って変形し,その範囲で{p_n}^2の倍数であるnを拾い上げていけばよい.ただし,前問ではnに制限がないが,本問では制限がついてしまっていることに注意.

(3)
前問の議論で,p_n=1p_n=2,34\leqq p_n\leqq99p_n=100で場合分けしたので,本問でもこれと同様に場合分けして考えればよい.

解答例

(1)
\left[\sqrt[3]{n}\right]=2\Leftrightarrow2\leqq\sqrt[3]{n}<3\Leftrightarrow2^3\leqq n<3^3\Leftrightarrow8\leqq n<27
である.この範囲で4の倍数となるものが答えである.
\therefore n=8,12,16,20,24……(答)

(2)
nの値に制限がない場合,
\left[\sqrt[3]{n}\right]=p_n\Leftrightarrow p_n\leqq\sqrt[3]{n}<p_n+1\Leftrightarrow{p_n}^3\leqq n<\left(p_n+1\right)^3\Leftrightarrow{p_n}^3\leqq n<{p_n}^3+3{p_n}^2+3p_n+1
となる.この範囲に,{p_n}^2の倍数であるnは,
n={p_n}^3,{p_n}^3+{p_n}^2,{p_n}^3+2{p_n}^2,\cdots\cdots,{p_n}^3+k{p_n}^2
k+1個ある.ここで,kは,{p_n}^3+k{p_n}^2\leqq{p_n}^3+3{p_n}^2+3p_n\Leftrightarrow k\leqq3+\frac{3}{p_n}を満たす最大の自然数である.つまり,p_n=1ならばk=6,p_n=2,3ならばk=4,p_n\geqq4ならばk=3である.
今はn\leqq{10}^6という制限があるが,{p_n}^3+3{p_n}^2+3p_n+1\leqq{10}^6\Leftrightarrow\left(p_n+1\right)^3\leqq{10}^6\Leftrightarrow p_n\leqq99までは上記の議論が使える.
さて,n\leqq{10}^6よりp_n\leqq\left[\sqrt[3]{{10}^6}\right]=\left[100\right]=100であるから,p_n=100のときを別個で考えれば必要十分.
p_n=100となるnn={10}^6のみであるから,{p_n}^2={100}^2の倍数であるnn={10}^6の1個のみ.
よって,求める個数は,
\left(6+1\right)+\left(4+1\right)+\left(4+1\right)+\left(3+1\right)\cdot96+1=402個……(答)

(3)
前問の議論より,
(Ⅰ)p_n=1のとき
{p_n}^2=1の倍数であるnは,
n={p_n}^3,{p_n}^3+{p_n}^2,{p_n}^3+2{p_n}^2,\cdots\cdots,{p_n}^3+6{p_n}^2=1,2,3,4,5,6,7
である.これらをp_n\left(p_n+1\right)=2で割った余りは,順番に1,0,1,0,1,0,1である.
(Ⅱ)p_n=2のとき
{p_n}^2=4の倍数であるnは,
n={p_n}^3,{p_n}^3+{p_n}^2,{p_n}^3+2{p_n}^2,\cdots\cdots,{p_n}^3+4{p_n}^2=8,12,16,20,24
である.これらをp_n\left(p_n+1\right)=6で割った余りは,順番に2,0,4,2,0である.
(Ⅲ)p_n=3のとき
{p_n}^2=9の倍数であるnは,
n={p_n}^3,{p_n}^3+{p_n}^2,{p_n}^3+2{p_n}^2,\cdots\cdots,{p_n}^3+4{p_n}^2=27,36,45,54,63
である.これらをp_n\left(p_n+1\right)=12で割った余りは,順番に3,0,9,6,3である.
(Ⅳ)4\leqq p_n\leqq99のとき
{p_n}^2の倍数であるnは,
n={p_n}^3,{p_n}^3+{p_n}^2,{p_n}^3+2{p_n}^2,{p_n}^3+3{p_n}^2
である.これらをp_n\left(p_n+1\right)で割った余りは,順番にp_n,0,{p_n}^2,{p_n}^2-p_nである.
(Ⅴ)p_n=100のとき
{p_n}^2={100}^2の倍数であるnは,
n={10}^6
である.これをp_n\left(p_n+1\right)=10100で割った余りは,100である.
以上,(Ⅰ)~(Ⅴ)より,
S=\left(1+0+1+0+1+0+1\right)+\left(2+0+4+2+0\right)+\left(3+0+9+6+3\right)+\sum_{p_n=4}^{99}\left\{p_n+0+{p_n}^2+\left({p_n}^2-p_n\right)\right\}+100=656805……(答)

LINE公式アカウント開始

LINE公式アカウントのみでの限定情報もお伝えします。ぜひご登録ください。

Published by

早慶専門個別指導塾HIRO ACADEMIA

偏差値30から早稲田慶應に合格するための日本で唯一の予備校です。 ただ覚えるだけの丸暗記では早稲田慶應に合格することはできません。 本ブログでは、当塾のメソッドでいかにして考えて早稲田慶應に合格することができるのかの一部をお伝えします。