偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 資料請求
  • 資料請求
  • カウンセリング
  • お電話

早慶専門塾が紹介! 早稲田慶應穴場学部と難しい学部のTOP3紹介

2019.10.23

こんにちは。HIRO ACADEMIAの小野です。 『早慶に穴場の学部なんてあるの!?』と思われがちですが、 倍率や対策を考慮して、比較的入るのが容易な学部は存在します。 また、逆に非常にはいるのが難しく、よほど志望度が高くない限りは避けた方が良い学部も存在しています。それでは、さっそくまずは穴場学

  • …続きを読む
  • こんにちは。HIRO ACADEMIAの小野です。

    『早慶に穴場の学部なんてあるの!?』と思われがちですが、

    倍率や対策を考慮して、比較的入るのが容易な学部は存在します。

    また、逆に非常にはいるのが難しく、よほど志望度が高くない限りは避けた方が良い学部も存在しています。それでは、さっそくまずは穴場学部からご紹介していきます。

    早慶穴場の学部

    では、早慶穴場学部をランキング形式で紹介していきます!

    早慶穴場学部3位 早稲田大学人間科学部健康福祉科学科

    まず第一にきたのはみなさんの予想通りかもしれませんが、、

    早稲田大学の人間科学部です。倍率は、2019年はは7.8倍と早稲田の中では一般的な数値となりました。

    倍率以外でのポイントとしては、英語の長文が他の早慶よりも短めで(200ワード程度)、
    比較的取り組みやすい問題となっています。

    早稲田政治経済学部、法学部や国際教養学部といった超長文の対策となると、
    物凄い時間がかかるのですが、
    人間科学部の長さの長文だとパラグラフの構造さえ分かっていれば、意外とむずかしくありません。
    また、他の早稲田に比べると、英語以外の科目も比較的解きやすい問題が揃っています。そのため、受けやすい学部と言えるでしょう。

    人間科学部についての具体的な対策についてはこちらの記事をどうぞ。

    早慶穴場学部2位 慶應文学部(世界史専攻)

    続いて、穴場の学部として上げられるのが、慶應文学部の世界史専攻の場合です。
    慶應の文学部の倍率は,2019年は4倍程度でした。

    倍率以外をみてみると、まず慶應合格のポイントである英語についてですが、
    以前はカナリ難しい問題が多かったのですが、
    近年は比較的解きやすい問題が多くなっています。
    また、世界史選択の場合は問題が一問一答(記述形式)のため、150字程度の論述がある日本史選択に比べると取り組みやすいです。

    また、早稲田に比べると、圧倒的に倍率が低いのが慶應ですが、その一番の原因と言われているのが小論文ですね。小論文対策は、むずかしく皆が避けがちですが、正しい現代文の対策をして読解力をつけることで、合格レベルまでもっていくのはむずかしくありません。

    慶應文学部についての具体的な対策についてはこちらの記事をどうぞ。

    早慶穴場学部1位 慶應商学部(A方式)

    穴場学部の第一位は慶應商学部(A方式)です。なんといってもその倍率が3倍と早慶の中では圧倒的に低いです。
    また合格最低点も高得点争いが予想されるB方式と異なり、250~270点程度で良いので、オススメです。

    ただ、受験科目がA方式の場合は英語数学地歴となりますので、受験者がそもそも国公立を受けた人と限られていますので注意してください。

    慶應商学部についての具体的な対策についてはこちらの記事をどうぞ。

    上記のランキングには入らなかったですが、
    意外と慶應法学部や慶應経済学部も穴場だったりします。対策次第で合格圏内に入るのは意外と容易です。

    早慶避けた方が良い学部

    それではできれば受けるのは避けたい学部を紹介していきますね。

    早慶避けた方が良い学部第3位 慶應大学商学部 (B方式)

    まず、第3位が慶應の商学部B方式です。A方式だと穴場なのですが、B方式になると途端にレベルが上がります。

    というのも、まず倍率が8培近くになります。5倍近辺が多い慶應においてこの数値は異常です。
    英語が配点上重要なのが慶應大学なのですが、その英語が解きやすいのが原因でしょう。またその解きやすさから、英語では8割り位は取らないと合格が難しいです。
    近年はやや下がっているとはいえ、過去には全体の合格最低点が8割り近くになったこともあり非常に難しいです。

    慶應商学部についての具体的な対策についてはこちらの記事をどうぞ。

    早慶避けた方が良い学部第2位早稲田大学社会科学部(歴史選択)

    続いて第2位が早稲田大学社会科学部になります。
    夜間から昼になってから鰻登りに偏差値は上がっており、偏差値上では早稲田大学の法学部や政治経済学部よりも上に位置しています。

    大学に入って専門性ではなく色々なことを学んでいくというスタイルが近年の学生は受けているようです。

    また一番のポイントは全ての問題がマークシートだということです。(2019年時点)
    *来年以降、記述入試の影響で変わる可能性があります。

    マークシートのみというのは実力があまりない受験生にとって運頼みで受かるかも・・と思わせる部分もあるのか、また実際に問題が難しくそのような人でも受かる場合もあるのですが。。非常に人気の高い学部になっています。

    もちろん、早稲田大学社会科学部も対策次第で合格は十分可能です。

    早稲田大学社会科学部についての各学部の具体的な対策についてはこちらの記事をどうぞ。

    早慶避けた方が良い学部第1位早稲田大学商学部(歴史選択)

    最後にご紹介する避けた方が良い学部第1位が早稲田大学商学部の歴史選択です。商学部の人気傾向からかどんどんと倍率が上がってきています。

    問題もどの科目も歴史選択の場合は非常に時やすく、
    『ひょっとしたら自分も受かるかも!?』と思わせる部分があり難しいですね。ですが、対策をしっかり積んでいないと難しい学部であるのは間違い無いありません。

    来年以降は数学選択の枠が確保され、さらなる難関となりそうな予感です。。

    志望度が高い学生も多いので受験する学生は徹底的に対策を積んで望んでください。

    早稲田大学商学部についての具体的な対策についてはこちらの記事をどうぞ。

    まとめ

    早慶はどの学部もクセが強く受けるにしても対策をしっかり積んでいないと合格は難しいです。ただ解くだけの過去問ではなく徹底分析をして盤石な対策で早慶に臨んでくださいね。お気軽にこちらからご連絡ください。

2018年慶應大学商学部|過去問徹底研究 大問3

2019.10.14

方針の立て方 (ⅰ)は具体的に考えてみれば解答が得られる. (ⅱ)(ⅲ)は誘導に乗っていければ解説以上の特筆事項はない.コンビネーションの公式:は本問では度々使う.入試数学(特に文系数学)には必須の公式ではないが,余力のある受験生は覚えておいても良いかもしれない.この公式を覚えてなくとも本問では回答

  • …続きを読む
  • 方針の立て方

    (ⅰ)は具体的に考えてみれば解答が得られる.
    (ⅱ)(ⅲ)は誘導に乗っていければ解説以上の特筆事項はない.コンビネーションの公式:{{_m^}\mathrm{C}}_n={{_{m-1}^}\mathrm{C}}_n+{{_{m-1}^}\mathrm{C}}_{n-1}は本問では度々使う.入試数学(特に文系数学)には必須の公式ではないが,余力のある受験生は覚えておいても良いかもしれない.この公式を覚えてなくとも本問では回答欄の形式から,どう変形していけば良いかが分かる.

    解答例

    (ⅰ)
    (45)0
    (46)5
    (47)(48)10
    (49)0
    (50)5
    (51)(52)\frac{3}{8}
    (53)(54)10
    (55)(56)15
    (57)(58)\frac{1}{8}

    (ⅱ)
    (59)3
    (60)3
    (61)2
    (62)2
    (63)4
    (64)4
    (65)2
    (66)5
    (67)7
    (68)5
    (69)7
    (70)6
    (71)5
    (72)6
    (73)5
    (74)7
    (75)5
    (76)2
    (77)5

    (ⅲ)
    (ア)k-1
    (イ)\frac{k}{2}
    (ウ)\frac{k}{2}
    (エ)p-q
    (オ)\frac{k}{2}
    (カ)k
    (キ)\frac{k}{2}
    (ク)\frac{k+1}{2}
    (ケ)\frac{k-1}{2}
    (コ)\frac{k+1}{2}
    (サ)\frac{k+1}{2}
    (シ)t=0

    解説

    (ⅰ)
    客3の待ち時間は0,5,10分のいずれか.
    W\left(3,0\right)=\frac{1}{2}W\left(2,0\right)+\frac{1}{2}W\left(2,5\right)=\frac{1}{2}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{2}
    W\left(3,5\right)=\frac{1}{2}W\left(2,0\right)=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}
    W\left(3,10\right)=\frac{1}{2}W\left(2,5\right)=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}
    よって,
    W\left(3,0\right)=\frac{1}{2},W\left(3,5\right)=W\left(3,10\right)=\frac{1}{4}……(答)
    客4の待ち時間は0,5,10,15分のいずれか.
    W\left(4,0\right)=\frac{1}{2}W\left(3,0\right)+\frac{1}{2}W\left(3,5\right)=\frac{1}{2}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{1}{4}=\frac{3}{8}
    W\left(4,5\right)=\frac{1}{2}W\left(3,0\right)+\frac{1}{2}W\left(3,10\right)=\frac{1}{2}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{1}{4}=\frac{3}{8}
    W\left(4,10\right)=\frac{1}{2}W\left(3,5\right)=\frac{1}{2}\cdot\frac{1}{4}=\frac{1}{8}
    W\left(4,15\right)=\frac{1}{2}W\left(3,10\right)=\frac{1}{2}\cdot\frac{1}{4}=\frac{1}{8}
    よって,
    W\left(4,0\right)=W\left(4,5\right)=\frac{3}{8},W\left(4,10\right)=W\left(4,15\right)=\frac{1}{8}……(答)

    (ⅱ)
    〇(59)~(62)について
    W\left(k,5\left(k-1\right)\right)に対して帰納法の仮定が使える.k+\left(k-1\right)=2k-1は奇数であるから,④のn+tが奇数のときが適用される.
    \therefore W\left(k,5\left(k-1\right)\right)\times\frac{1}{2}=\frac{1}{2^{k-1}}\cdot{_{k-1}^}\mathrm{C}_\frac{k+\left(k-1\right)-1}{2}\times\frac{1}{2}=\frac{1}{2^k}\cdot{_{k-1}^}\mathrm{C}_{k-1}=\frac{1}{2^k}\cdot{_k^}\mathrm{C}_k……(答)
    〇(63)~(65)について
    W\left(k,5\left(k-2\right)\right)に対して帰納法の仮定が使える.k+\left(k-2\right)=2k-2は偶数であるから,④のn+tが偶数のときが適用される.
    \therefore W\left(k,5\left(k-2\right)\right)\times\frac{1}{2}=\frac{1}{2^{k-1}}\cdot{_{k-1}^}\mathrm{C}_\frac{k+\left(k-2\right)}{2}\times\frac{1}{2}=\frac{1}{2^k}\cdot{_{k-1}^}\mathrm{C}_{k-1}=\frac{1}{2^k}\cdot{_k^}\mathrm{C}_k……(答)
    〇(66)と(67)について
    題意を満たす場合,時系列を図示すると,

    上図.
    Aの手続きは5分かかり,Bの手続きは15分かかることから,W\left(k+1,5t\right)は,客k10+5t-5=5\left(t+1\right)分待った後にAを行う確率と,客k10+5t-15=5\left(t-1\right)分待った後にBを行う確率の和になる.……(答)

    〇(68)~(72)について
    W\left(k,5\left(t+1\right)\right),W\left(k,5\left(t-1\right)\right)は,④でt\rightarrow t+1,t-1としたものと考える.するとn+tが奇数のときが適用される.
    \therefore W\left(k,5\left(t+1\right)\right)=\frac{1}{2^{k-1}}\cdot{_{k-1}^}\mathrm{C}_\frac{k+\left(t+1\right)-1}{2},W\left(k,5\left(t-1\right)\right)=\frac{1}{2^{k-1}}\cdot{_{k-1}^}\mathrm{C}_\frac{k+\left(t-1\right)-1}{2}……(答)
    これらを⑤に代入すれば,
    W\left(k+1,5t\right)=\frac{1}{2^{k-1}}\cdot{_{k-1}^}\mathrm{C}_\frac{k+\left(t+1\right)-1}{2}\times\frac{1}{2}+\frac{1}{2^{k-1}}\cdot{_{k-1}^}\mathrm{C}_\frac{k+\left(t-1\right)-1}{2}\times\frac{1}{2}=\frac{1}{2^k}\left({_{k-1}^}\mathrm{C}_\frac{k+t}{2}+{_{k-1}^}\mathrm{C}_{\frac{k+t}{2}-1}\right)=\frac{1}{2^k}\cdot{_k^}\mathrm{C}_\frac{k+t}{2}……(答)
    (※最後の式変形の際,{_{k-1}^}\mathrm{C}_\frac{k+t}{2}+{_{k-1}^}\mathrm{C}_{\frac{k+t}{2}-1}=\frac{\left(k-1\right)!}{\left(\frac{k-t}{2}-1\right)!\left(\frac{k+t}{2}\right)!}+\frac{\left(k-1\right)!}{\left(\frac{k-t}{2}\right)!\left(\frac{k+t}{2}-1\right)!}=\left(\frac{k-t}{2}\right)\cdot\frac{\left(k-1\right)!}{\left(\frac{k-t}{2}\right)!\left(\frac{k+t}{2}\right)!}+\left(\frac{k+t}{2}\right)\cdot\frac{\left(k-1\right)!}{\left(\frac{k-t}{2}\right)!\left(\frac{k+t}{2}\right)!}=k\cdot\frac{\left(k-1\right)!}{\left(\frac{k-t}{2}\right)!\left(\frac{k+t}{2}\right)!}=\frac{k!}{\left(\frac{k-t}{2}\right)!\left(\frac{k+t}{2}\right)!}={_k^}\mathrm{C}_\frac{k+t}{2}を用いた)
    〇(73)~(77)について
    W\left(k,5\left(t+1\right)\right),W\left(k,5\left(t-1\right)\right)は,④でt\rightarrow t+1,t-1としたものと考える.するとn+tが偶数のときが適用される.
    \therefore W\left(k,5\left(t+1\right)\right)=\frac{1}{2^{k-1}}\cdot{_{k-1}^}\mathrm{C}_\frac{k+\left(t+1\right)}{2},W\left(k,5\left(t-1\right)\right)=\frac{1}{2^{k-1}}\cdot{_{k-1}^}\mathrm{C}_\frac{k+\left(t-1\right)}{2}……(答)
    これらを⑤に代入すれば,
    W\left(k+1,5t\right)=\frac{1}{2^{k-1}}\cdot{_{k-1}^}\mathrm{C}_\frac{k+\left(t+1\right)}{2}\times\frac{1}{2}+\frac{1}{2^{k-1}}\cdot{_{k-1}^}\mathrm{C}_\frac{k+\left(t-1\right)}{2}\times\frac{1}{2}=\frac{1}{2^k}\left({_{k-1}^}\mathrm{C}_\frac{k+t+1}{2}+{_{k-1}^}\mathrm{C}_{\frac{k+t+1}{2}-1}\right)=\frac{1}{2^k}\cdot{_k^}\mathrm{C}_\frac{k+t+1}{2}……(答)

    (ⅲ)
    〇(ア)~(ウ)について
    W\left(k,5\right),W\left(k,0\right)は④のn=k,t=1,0のパターンであり,n+tが奇数,偶数のときが適用される.
    \therefore W\left(k,5\right)=\frac{1}{2^{k-1}}\cdot{_{k-1}^}\mathrm{C}_\frac{k+1-1}{2}=\frac{1}{2^{k-1}}\cdot{_{k-1}^}\mathrm{C}_\frac{k}{2},\ W\left(k,0\right)=\frac{1}{2^{k-1}}\cdot{_{k-1}^}\mathrm{C}_\frac{k+0}{2}=\frac{1}{2^{k-1}}\cdot{_{k-1}^}\mathrm{C}_\frac{k}{2}……(答)
    〇(エ)について
    {_p^}\mathrm{C}_q=\frac{p!}{\left(p-q\right)!q!}=\frac{p!}{\left\{p-\left(p-q\right)\right\}!\left(p-q\right)!}={_p^}\mathrm{C}_{p-q}……(答)
    〇(オ)~(キ)について
    (エ)の結果より{_{k-1}^}\mathrm{C}_\frac{k}{2}={_{k-1}^}\mathrm{C}_{\frac{k}{2}-1}である.
    (ア)~(ウ)の結果を⑥に代入して,
    W\left(k+1,0\right)=\frac{1}{2^{k-1}}\cdot{_{k-1}^}\mathrm{C}_\frac{k}{2}\times\frac{1}{2}+\frac{1}{2^{k-1}}\cdot{_{k-1}^}\mathrm{C}_\frac{k}{2}\times\frac{1}{2}=\frac{1}{2^k}\left({_{k-1}^}\mathrm{C}_\frac{k}{2}+{_{k-1}^}\mathrm{C}_{\frac{k}{2}-1}\right)=\frac{1}{2^k}\cdot{_k^}\mathrm{C}_\frac{k}{2}……(答)
    (※最後の式変形の際,{_{k-1}^}\mathrm{C}_\frac{k}{2}+{_{k-1}^}\mathrm{C}_{\frac{k}{2}-1}=\frac{\left(k-1\right)!}{\left(\frac{k}{2}-1\right)!\left(\frac{k}{2}\right)!}+\frac{\left(k-1\right)!}{\left(\frac{k}{2}\right)!\left(\frac{k}{2}-1\right)!}=\frac{k}{2}\cdot\frac{\left(k-1\right)!}{\left(\frac{k}{2}\right)!\left(\frac{k}{2}\right)!}+\frac{k}{2}\cdot\frac{\left(k-1\right)!}{\left(\frac{k}{2}\right)!\left(\frac{k}{2}\right)!}=k\cdot\frac{\left(k-1\right)!}{\left(\frac{k}{2}\right)!\left(\frac{k}{2}\right)!}=\frac{k!}{\left(k-\frac{k}{2}\right)!\left(\frac{k}{2}\right)!}={_k^}\mathrm{C}_\frac{k}{2}を用いた)
    〇(ク)~(ケ)について
    W\left(k,5\right),W\left(k,0\right)は④のn=k,t=1,0のパターンであり,n+tが偶数,奇数のときが適用される.
    \therefore W\left(k,5\right)=\frac{1}{2^{k-1}}\cdot{_{k-1}^}\mathrm{C}_\frac{k+1}{2},\ W\left(k,0\right)=\frac{1}{2^{k-1}}\cdot{_{k-1}^}\mathrm{C}_\frac{k+0-1}{2}=\frac{1}{2^{k-1}}\cdot{_{k-1}^}\mathrm{C}_\frac{k-1}{2}……(答)
    〇(コ)と(サ)について
    (ク)~(ケ)の結果を⑥に代入して,
    W\left(k+1,0\right)=\frac{1}{2^{k-1}}\cdot{_{k-1}^}\mathrm{C}_\frac{k+1}{2}\times\frac{1}{2}+\frac{1}{2^{k-1}}\cdot{_{k-1}^}\mathrm{C}_\frac{k-1}{2}\times\frac{1}{2}=\frac{1}{2^k}\left({_{k-1}^}\mathrm{C}_\frac{k+1}{2}+{_{k-1}^}\mathrm{C}_{\frac{k+1}{2}-1}\right)=\frac{1}{2^k}\cdot{_k^}\mathrm{C}_\frac{k+1}{2}……(答)
    〇(シ)について
    W\left(k+1,0\right)n=k+1のときの中でも,(ⅱ)で考えられていなかったt=0のときである.……(答)

2016年慶應大学経済学部|過去問徹底研究 大問4

2019.10.09

方針の立て方 どれも基本問題であり,特筆事項なし. 解答例 真数条件より,が必要. (1) 2次方程式の実数解が存在しないためには,判別式が負であれば必要十分. これは真数条件を満たす. ……(答) (2) 2次方程式の実数解がただ1つ存在するためには,判別式が0であれば必要十分. このもとで,2次

  • …続きを読む
  • 方針の立て方

    どれも基本問題であり,特筆事項なし.

    解答例

    真数条件より,0<tが必要.
    (1)
    2次方程式の実数解が存在しないためには,判別式が負であれば必要十分.
    \therefore\left[-\left\{\left({\mathrm{log}}_2{t}\right)^2+1\right\}\right]^2-1\cdot\left\{6\left({\mathrm{log}}_2{t}\right)^2+1\right\}<0\Leftrightarrow\left({\mathrm{log}}_2{t}\right)^2\left\{\left({\mathrm{log}}_2{t}\right)^2-4\right\}<0\Leftrightarrow \begin{cases} {\mathrm{log}}_2{t}\neq0 \\ \left({\mathrm{log}}_2{t}\right)^2-4<0 \end{cases}\Leftrightarrow\begin{cases} t\neq1 \\ \frac{1}{4}<t<4 \end{cases}\Leftrightarrow\frac{1}{4}<t<1,1<t<4
    これは真数条件を満たす.
    \therefore\frac{1}{4}<t<1,1<t<4……(答)

    (2)
    2次方程式の実数解がただ1つ存在するためには,判別式が0であれば必要十分.
    \therefore\left[-\left\{\left({\mathrm{log}}_2{t}\right)^2+1\right\}\right]^2-1\cdot\left\{6\left({\mathrm{log}}_2{t}\right)^2+1\right\}=0\Leftrightarrow\left({\mathrm{log}}_2{t}\right)^2\left\{\left({\mathrm{log}}_2{t}\right)^2-4\right\}=0\Leftrightarrow{\mathrm{log}}_2{t}=0,\left({\mathrm{log}}_2{t}\right)^2-4=0\Leftrightarrow t=\frac{1}{4},1,4
    このもとで,2次方程式の解は,
    x=f\left(t\right)=\left({\mathrm{log}}_2{t}\right)^2+1
    これより,f\left(t\right)の最小値はt=1で,最大値はt=\frac{1}{4},4でとる.
    よって,f\left(t\right)の最小値はf\left(1\right)=1,最大値はf\left(\frac{1}{4}\right)=f\left(4\right)=5……(答)

    (3)
    1\leqq\log_4{t}\leqq\frac{3}{2}\Leftrightarrow2\leqq\log_2{t}\leqq3\Leftrightarrow4\leqq t\leqq8
    よって,2次方程式は2つの相異なる実数解をもち,その解は,
    x=\left({\mathrm{log}}_2{t}\right)^2+1\pm\sqrt{\left[-\left\{\left({\mathrm{log}}_2{t}\right)^2+1\right\}\right]^2-1\cdot\left\{6\left({\mathrm{log}}_2{t}\right)^2+1\right\}}=\left({\mathrm{log}}_2{t}\right)^2+1\pm\log_2{t}\sqrt{\left({\mathrm{log}}_2{t}\right)^2-4}
    \therefore f\left(t\right)=\left({\mathrm{log}}_2{t}\right)^2+1-\log_2{t}\sqrt{\left({\mathrm{log}}_2{t}\right)^2-4}
    ここで{\mathrm{log}}_2{t}=yと置き換えると,
    f\left(t\right)=y^2+1-y\sqrt{y^2-4} (2\leqq y\leqq3)
    \frac{d}{dy}f\left(t\right)=2y-\frac{2y^2-4}{\sqrt{y^2-4}}
    \frac{d}{dy}f\left(t\right)=0となるのは,
    2y-\frac{2y^2-4}{\sqrt{y^2-4}}=0\Leftrightarrow y\sqrt{y^2-4}=y^2-2
    両辺を2乗して計算すると0=4となり不適.つまり\frac{d}{dy}f\left(t\right)\neq0

    y 2 \cdots 3
    \frac{d}{dy}f\left(t\right) - - -
    f\left(t\right) \searrow \searrow \searrow

    よって,最小値はy=3のときで,3^2+1-3\sqrt{3^2-4}=10-3\sqrt5……(答)

2016年慶應大学経済学部|過去問徹底研究 大問2

2019.10.09

方針の立て方 (1)はどれも基本問題であるため特筆事項なし. (2)について.は分子を和の形に直すと,約分ができ回答欄の形式に沿うと分かる.よって,を和の形に変形するが,これはの定義を用いれば容易い. (3)について.前問で求めたの分母を上手く約分できないかを考えれば,本解のような式変形ができる.

  • …続きを読む
  • 方針の立て方

    (1)はどれも基本問題であるため特筆事項なし.

    (2)について.\frac{b_k}{a_ka_{k+1}}は分子を和の形に直すと,約分ができ回答欄の形式に沿うと分かる.よって,b_kを和の形に変形するが,これはb_kの定義を用いれば容易い.

    (3)について.前問で求めたS_nの分母を上手く約分できないかを考えれば,本解のような式変形ができる.

    解答例

    (13)3
    (14)2
    (15)2
    (16)1
    (17)1
    (18)(19)-1
    (20)1
    (21)2
    (22)2
    (23)(24)01
    (25)(26)-1
    (27)0
    (28)2
    (29)2
    (30)2
    (31)2
    (32)(33)02

    解説

    (1)
    a_{n+1}=\frac{1}{100}a_n+\frac{1}{10}\Leftrightarrow a_{n+1}-\frac{10}{99}=\frac{1}{100}\left(a_n-\frac{10}{99}\right)
    と変形できる.
    \therefore a_n-\frac{10}{99}=\left(a_1-\frac{10}{99}\right)\cdot\left(\frac{1}{100}\right)^{n-1}=-\frac{10}{99}\left(\frac{1}{100}\right)^n\Leftrightarrow a_n=-\frac{10}{99}\left(\frac{1}{100}\right)^n+\frac{10}{99}
    よって,階差数列\left\{b_n\right\}は,
    b_n=a_{n+1}-a_n=-\frac{10}{99}\left(\frac{1}{100}\right)^{n+1}+\frac{10}{99}-\left\{-\frac{10}{99}\left(\frac{1}{100}\right)^n+\frac{10}{99}\right\}=\frac{1}{{10}^3}\left(\frac{1}{{10}^2}\right)^{n-1}=\frac{1}{{10}^{2n+1}}
    となる.よって,p=3,q=2,r=2,s=1……(答)
    更に,
    a_n=a_1+\left(a_2-a_1\right)+\left(a_3-a_2\right)+\cdots\cdots+\left(a_n-a_{n-1}\right)=a_1+\left(b_1+b_2+\cdots\cdots+b_{n-1}\right)=a_1+\sum_{k=1}^{n+\left(-1\right)}b_k……(答)
    また,
    a_1+\sum_{k=1}^{n+\left(-1\right)}b_k=\frac{1}{10}+\frac{\frac{1}{{10}^3}\left\{1-\left(\frac{1}{{10}^2}\right)^{n-1}\right\}}{1-\frac{1}{{10}^2}}=\frac{\frac{1}{10}\left(1-\frac{1}{{10}^{2n}}\right)}{1-\frac{1}{{10}^2}}
    であるから,t=1,u=2,v=2……(答)

    (2)
    b_n=a_{n+1}-a_nより,
    \frac{b_k}{a_ka_{k+1}}=\frac{a_{k+1}-a_k}{a_ka_{k+1}}=\frac{1}{a_k}+\frac{-1}{a_{k+1}}……(答)
    これに,b_k=\frac{1}{{10}^{2k+1}}を代入すれば,
    \frac{\frac{1}{{10}^{2k+1}}}{a_ka_{k+1}}=\frac{1}{a_k}-\frac{1}{a_{k+1}}\Leftrightarrow\frac{1}{a_ka_{k+1}}={10}^{2k+1}\left(\frac{1}{a_k}-\frac{1}{a_{k+1}}\right)
    これを利用すれば,
    S_n=\sum_{k=1}^{n}\left\{\frac{1}{{10}^{2k}}\cdot{10}^{2k+1}\left(\frac{1}{a_k}-\frac{1}{a_{k+1}}\right)\right\}=10\sum_{k=1}^{n}\left(\frac{1}{a_k}-\frac{1}{a_{k+1}}\right)=10\left\{\left(\frac{1}{a_1}-\frac{1}{a_2}\right)+\left(\frac{1}{a_2}-\frac{1}{a_2}\right)+\cdots\cdots+\left(\frac{1}{a_n}-\frac{1}{a_{n+1}}\right)\right\}=10\left(\frac{1}{a_1}-\frac{1}{a_{n+1}}\right)=10\left[10-\frac{1-\frac{1}{{10}^2}}{\frac{1}{10}\left\{1-\frac{1}{{10}^{2\left(n+1\right)}}\right\}}\right]=\frac{1-\frac{1}{{10}^{2n}}}{1-\frac{1}{{10}^{2n+2}}}
    となるから,w=0,x=2,y=2,z=2……(答)

    (3)
    \left({100}^{n+1}-1\right)S_n={10}^{2n+2}\left(1-\frac{1}{{10}^{2n+2}}\right)\cdot\frac{1-\frac{1}{{10}^{2n}}}{1-\frac{1}{{10}^{2n+2}}}={10}^{2n+2}-{10}^2
    よって,2n+2桁……(答)

2016年慶應大学経済学部|過去問徹底研究 大問3

2019.10.09

方針の立て方 (1)(3)(4)は基本問題であり,特筆事項なし.(4)は本解ではと丁寧に記述したが,であることと,解答形式は穴埋め形式である(途中の計算を記述しない)ため,本番では直ちに11と答えても良いだろう. (2)は少々考えにくい問題であるが,相関係数とは,1つのデータで決まるものではなく,他

  • …続きを読む
  • 方針の立て方

    (1)(3)(4)は基本問題であり,特筆事項なし.(4)は本解では\sqrt{120.8}=10.9\cdots\cdots\fallingdotseq11と丁寧に記述したが,{11}^2=121であることと,解答形式は穴埋め形式である(途中の計算を記述しない)ため,本番では直ちに11と答えても良いだろう.
    (2)は少々考えにくい問題であるが,相関係数とは,1つのデータで決まるものではなく,他のデータとの関係で決まるものであるから,複数のデータを比較することが必要だと考える.
    相関係数0.95以上というのは大変強い正の相関であり,殆ど比例の関係だと見做せる.

    解答例

    (34)(35)52
    (36)(37)74
    (38)0
    (39)1
    (40)3
    (41)5
    (42)6
    (43)(44)(45)68.2
    (46)(47)(48)68.4
    (49)9
    (50)(51)11

    解説

    (1)
    表より,最小値は52,最大値は74……(答)

    (2)
    番号2の個体と比較して,「体長が大きく,体重も大きい」か「体長が小さく,体重も小さい」のどちらかに該当する番号の個体は種類Bに分類される可能性があり,該当する番号は(2を除いて)4,5,6,7,8,9である.
    逆にこれに該当しない番号0,1,3の個体は種類Aに分類される.
    番号0の個体と比較して,「体長が大きく,体重も大きい」か「体長が小さく,体重も小さい」のどちらかに該当する番号の個体は種類Aに分類される可能性があり,該当する番号は(0,1,3を除いて)5,6である.よって,種類Aの5匹の番号は小さい方から0,1,3,5,6……(答)
    また,種類Aの5匹の体長の平均値は,\frac{60+66+69+72+74}{5}=68.2……(答)

    (3)
    10匹のうち体長の大きい方から5匹の個体の番号は1,3,5,6,9であり,この5匹の体長の平均値は,\frac{66+69+72+74+61}{5}=68.4……(答)
    種類Bの5匹の番号は2,4,7,8,9であるから,体長の大きい5匹のうち種類Bの個体の番号は9……(答)

    (4)
    \sqrt{\left(60-68.2\right)^2+\left(66-68.2\right)^2+\left(69-68.2\right)^2+\left(72-68.2\right)^2+\left(74-68.2\right)^2}=\sqrt{120.8}=10.9\cdots\cdots\fallingdotseq11……(答)

2016年慶應大学経済学部|過去問徹底研究 大問1

2019.10.09

方針の立て方 (1) の二変数を考えるのは困難であるため,三角関数を導入することで一変数化する. (2) 基本対称式の典型問題であるため特筆事項なし. (3) 前問と同様に基本対称式の問題.基本対称式の問題であるためとしないでとすると良い. 解答例 (1)(2) (3)(4) (5) (6) (7)

  • …続きを読む
  • 方針の立て方

    (1)
    x,yの二変数を考えるのは困難であるため,三角関数を導入することで一変数化する.

    (2)
    基本対称式の典型問題であるため特筆事項なし.

    (3)
    前問と同様に基本対称式の問題.基本対称式の問題であるため\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3としないで\left(x+y\right)^3=x^3+y^3+3xy\left(x+y\right)とすると良い.

    解答例

    (1)(2)-2
    (3)(4)06
    (5)6
    (6)1
    (7)(8)(9)\frac{-7}{2}
    (10)2
    (11)(12)10

    解説

    Cの式は\left(x-1\right)^2+\left(y-1\right)^2=8\Leftrightarrow x^2+y^2-2\left(x+y\right)=6である.
    (1)
    C上の点は\begin{cases} x-1=2\sqrt2\cos{\theta} \\ y-1=2\sqrt2\sin{\theta} \end{cases}\Leftrightarrow\left(x,y\right)=\left(2\sqrt2\cos{\theta}+1,2\sqrt2\sin{\theta}+1\right)とおくことができる(\thetaは任意の実数).
    \therefore t=\left(2\sqrt2\cos{\theta}+1\right)+\left(2\sqrt2\sin{\theta}+1\right)=4\sin{\left(\theta+\frac{\pi}{4}\right)}+2
    (※途中で三角関数の合成公式を用いた)
    \thetaは任意の実数を取りうるため,-1\leqq\sin{\left(\theta+\frac{\pi}{4}\right)}\leqq1. \therefore-2\leqq t\leqq6……(答)
    また,t=0のとき,x+y=0が成り立つから,円Cの式に代入すれば,
    x^2+y^2=6……(答)

    (2)
    t^2=\left(x+y\right)^2=x^2+y^2+2xy
    Cの式より,x^2+y^2-2\left(x+y\right)=6\Leftrightarrow x^2+y^2=2t+6であるから,上式に代入すると,
    t^2=2t+6+2xy\Leftrightarrow xy=\frac{1}{2}t^2-t-3=\frac{1}{2}\left(t-1\right)^2-\frac{7}{2}となる.-2\leqq t\leqq6のもとでの\frac{1}{2}\left(t-1\right)^2-\frac{7}{2}の最小値は,t=1のときの-\frac{7}{2}
    よって,xyの値はt=1のとき最小値-\frac{7}{2}をとる.……(答)

    (3)
    t^3=\left(x+y\right)^3=x^3+y^3+3xy\left(x+y\right)=x^3+y^3+3\left(\frac{1}{2}t^2-t-3\right)t\Leftrightarrow x^3+y^3=-\frac{1}{2}t^3+3t^2+9t
    f\left(t\right)=-\frac{1}{2}t^3+3t^2+9tとおくと,f^\prime\left(t\right)=-\frac{3}{2}t^2+6t+9=-\frac{3}{2}\left\{t-\left(2-\sqrt{10}\right)\right\}\left\{t-\left(2+\sqrt{10}\right)\right\}
    -2\leqq t\leqq6に注意して増減表を描くと,

    t -2 \cdots 2-\sqrt{10} \cdots 2+\sqrt{10} \cdots 6
    f^\prime\left(t\right) - - 0 + 0 - -
    f\left(t\right) -2 \searrow \qquad \nearrow 26+10\sqrt{10} \searrow \searrow

    よって,t=2+\sqrt{10}のとき\left(f\left(t\right)=\right)x^3+y^3は最大となる.……(答)

2017年慶應大学経済学部|過去問徹底研究 大問1

2019.10.07

方針の立て方 (1) 典型問題であるため特筆事項なし. (2) 前問と同様の解法を用いると考える. 前問では,中心座標が与えられていたためここから考えられたが,本問では中心座標が与えられていない.そこで,まずは中心を文字で置くことから始める.すると前問の解法の流れが使える. (3) まずは,半径の情

  • …続きを読む
  • 方針の立て方

    (1)
    典型問題であるため特筆事項なし.

    (2)
    前問と同様の解法を用いると考える.
    前問では,中心座標が与えられていたためここから考えられたが,本問では中心座標が与えられていない.そこで,まずは中心を文字で置くことから始める.すると前問の解法の流れが使える.

    (3)
    まずは,半径の情報が与えられている円C_1の議論をする.(1)や(2)と同様に中心座標を文字で置いて議論すれば良い.
    解答に至るには円C_2の中心に関する議論が必要になるから,円C_1と円C_2の情報をつなげる(というより円C_1の情報を円C_2の情報に変換する)ことを考える.本問では線分\mathrm{P}_\mathrm{1}\mathrm{P}_\mathrm{2}の長さの情報が与えられているため,これを使ってやれば良い.直線l_aの傾きが三角比でよく見る\sqrt3という値であることから,図形的に考えれば良いと直観する.

    解答例

    (1)1
    (2)3
    (3)(4)16
    (5)5
    (6)9
    (7)(8)-4
    (9)3

    解説

    (1)
    中心が\left(1,3+\sqrt{10}\right)であり,y軸と接することから,円Cの半径は1である.……(答)
    また,円Cは直線l_aと接することから,中心\left(1,3+\sqrt{10}\right)と直線l_aとの距離は半径の長さ1と等しくなる.
    \therefore\frac{\left|a\cdot1-\left(3+\sqrt{10}\right)\right|}{\sqrt{a^2+\left(-1\right)^2}}=1\Leftrightarrow\left(a-3-\sqrt{10}\right)^2=a^2+1\Leftrightarrow a=3……(答)

    (2)
    円の中心の座標を\left(\alpha,\beta\right)(\alpha,\betaは実数)とおく.すると,円Cの方程式は,
    \left(x-\alpha\right)^2+\left(y-\beta\right)^2=4
    まず,y軸と接することから,\alpha=\pm2
    また,円Cは直線l_a\colon y=2xと接することから,中心\left(\alpha,\beta\right)と直線l_aとの距離は半径の長さ2と等しくなる.
    \therefore\frac{\left|2\cdot\alpha-\beta\right|}{\sqrt{2^2+\left(-1\right)^2}}=2\Leftrightarrow\left|2\alpha-\beta\right|=2\sqrt5\Leftrightarrow2\alpha-\beta=\pm2\sqrt5\Leftrightarrow\beta=2\alpha\pm2\sqrt5
    よって,円の中心は\left(-2,-4-2\sqrt5\right),\left(-2,-4+2\sqrt5\right),\left(2,4-2\sqrt5\right),\left(2,4+2\sqrt5\right)の4点.この4点からなる平行四辺形の面積が求める面積であり,
    4\cdot4\sqrt5=16\sqrt5……(答)

    (3)
    C_1の中心座標を\left(1,\alpha\right)(\alphaは正の実数.また,x座標が1となることは,半径が1であることとy軸に接することから明らか)とおく.
    すると,円C_1の方程式は,
    \left(x-1\right)^2+\left(y-\alpha\right)^2=1
    と書ける.これが直線l_a\colon y=\sqrt3xと接することから,中心\left(1,\alpha\right)と直線l_aとの距離は半径の長さ1と等しくなる.
    \therefore\frac{\left|\sqrt3\cdot1-\alpha\right|}{\sqrt{\left(\sqrt3\right)^2+\left(-1\right)^2}}=1\Leftrightarrow\left|\sqrt3-\alpha\right|=2\Leftrightarrow\sqrt3-\alpha=\pm2\Leftrightarrow\alpha=\sqrt3\pm2
    \alphaは正の実数であることより,\alpha=\sqrt3+2が適当.
    よって,円C_1の方程式は\left(x-1\right)^2+\left(y-\sqrt3-2\right)^2=1であり,直線l_a\colon y=\sqrt3xとの接点\mathrm{P}_1の座標を求めると\left(\frac{2+\sqrt3}{2},\frac{3+2\sqrt3}{2}\right)と分かる.
    下図のように考えると,\mathrm{P}_2の座標は\left(\frac{2+\sqrt3}{2}+2,\frac{3+2\sqrt3}{2}+2\sqrt3\right)=\left(\frac{6+\sqrt3}{2},\frac{3+6\sqrt3}{2}\right)と分かる.

    C_2の中心の座標を\left(\beta,\gamma\right)(\beta,\gammaはともに正の実数)とすると,y軸と接することから円C_2の半径は\betaとなる.
    また,中心\left(\beta,\gamma\right)は,点\mathrm{P}_2\left(\frac{6+\sqrt3}{2},\frac{3+6\sqrt3}{2}\right)を通る直線l_a\colon y=\sqrt3xの法線上にある.その法線の方程式は,y=-\frac{1}{\sqrt3}x+2+4\sqrt3であるから,\gamma=-\frac{1}{\sqrt3}\beta+2+4\sqrt3となる.
    更に,中心\left(\beta,\gamma\right)と直線l_a\colon y=\sqrt3xとの距離は半径\betaと等しくなるから,
    \frac{\left|\sqrt3\beta-\gamma\right|}{\sqrt{\left(\sqrt3\right)^2+\left(-1\right)^2}}=\beta\Leftrightarrow\sqrt3\beta-\gamma=\pm2\beta
    \gamma=-\frac{1}{\sqrt3}\beta+2+4\sqrt3と連立し,更に\betaが正の実数であることを用いれば,
    \beta=9-4\sqrt3……(答)

2018年慶応大学経済学部|過去問徹底研究 大問6

2019.10.07

方針の立て方 (1) およびで割り切れるということはで割り切れるということである.これに気付けなくとも,と表せることから,はを因数に持ち,はを因数に持つということが分かれば,結局同じ議論ができる.後は,本解答のようにを導入し解析していく.の導入は「がで割り切れる」という情報と「がで割り切れる」という

  • …続きを読む
  • 方針の立て方

    (1)
    xおよびx-1で割り切れるということはx\left(x-1\right)で割り切れるということである.これに気付けなくとも,F\left(x\right)=xP\left(x\right)=\left(x-1\right)Q\left(x\right)と表せることから,P\left(x\right)x-1を因数に持ち,Q\left(x\right)xを因数に持つということが分かれば,結局同じ議論ができる.後は,本解答のようにR\left(x\right)を導入し解析していく.R\left(x\right)の導入は「F\left(x\right)xで割り切れる」という情報と「F\left(x\right)x-1で割り切れる」という情報の両方ともを加味しているため,F\left(x\right)=xP\left(x\right)F\left(x\right)=\left(x-1\right)Q\left(x\right)で考えるよりも都合が良い.
    求めるのは最小の次数のものであるため,R\left(x\right)を0次,1次,2次,……と考えていけば良い.

    (2)(3)は,(1)でf\left(x\right)が特定できてしまえば,典型問題の三次関数の接線の問題となる.特に捻りもなく,典型的な解法を取れば良い.

    解答例

    F\left(x\right)=xP\left(x\right)=\left(x-1\right)Q\left(x\right)と表せる.
    (1)
    F\left(x\right)はx\left(x-1\right)で割り切ることができる.その商をR\left(x\right)とおく.
    すると,
    F\left(x\right)=xP\left(x\right)=\left(x-1\right)Q\left(x\right)=x\left(x-1\right)R\left(x\right)
    と表せる.
    これより,
    \begin{cases} P\left(x\right)=\left(x-1\right)R\left(x\right) \\ Q\left(x\right)=xR\left(x\right) \end{cases}……(*)
    となる.
    P\left(0\right)=-4より,(*)の上式にx=0を代入すると,
    -4=-R\left(0\right)\Leftrightarrow R\left(0\right)=4
    Q\left(1\right)=2より,(*)の下式にx=1を代入すると,
    2=1\cdot R\left(1\right)\Leftrightarrow R\left(1\right)=2
    よって,
    \begin{cases} R\left(0\right)=4 \\ R\left(1\right)=2 \end{cases}
    これを満たすR\left(x\right)で次数が最小のものは,R\left(x\right)=-2x+4である.
    \therefore f\left(x\right)=x\left(x-1\right)\left(-2x+4\right)=-2x\left(x-1\right)\left(x-2\right)……(答)

    (2)
    f\left(x\right)=-2x^3+6x^2-4xであるから,f^\prime\left(x\right)=-6x^2+12x-4である.
    よって,点\left(r,f\left(r\right)\right)=\left(r,-2r^3+6r^2-4r\right)における接線は,
    y=\left(-6r^2+12r-4\right)x+4r^3-6r^2
    よって,求める傾きは-6r^2+12r-4,y切片は4r^3-6r^2……(答)

    (3)
    接線y=\left(-6r^2+12r-4\right)x+4r^3-6r^2が点\left(s,t\right)を通るので,
    t=\left(-6r^2+12r-4\right)s+4r^3-6r^2……(※)
    が成り立つ.
    y=f\left(x\right)=-2x^3+6x^2-4xは三次関数であり,複接線は引けないから,接線の本数と接点の個数は等しくなる.よって,(※)をrの三次方程式
    4r^3+\left(-6s-6\right)r^2+12sr-4s-t=0
    の解がちょうど2個存在すれば必要十分である.
    g\left(r\right)=4r^3+\left(-6s-6\right)r^2+12sr-4s-t
    とおくと,
    g^\prime\left(r\right)=12r^2+\left(-12s-12\right)r+12s=12\left(r-s\right)\left(r-1\right)
    である.
    (ⅰ)s=1のとき
    g^\prime\left(r\right)=12\left(r-1\right)^2となり,g^\prime\left(r\right)\geqq0(等号成立はr=1のときのみ)であるからg\left(r\right)は単調増加となる.このとき,g\left(r\right)=0となるrはただ1つしか存在しないため不適.
    (ⅱ)s\neq1のとき
    g^\prime\left(r\right)=0となるrは2つ(r=s,1)あり,かつr=s,1それぞれの前後でg^\prime\left(r\right)の符号が変化するから,g\left(r\right)は極大値を極小値を1つずつ持つ(r=s,1のどちらが極大値,極小値になるかはsと1の大小関係に依存する).この極大値もしくは極小値が0となるとき,g\left(r\right)=0となる解はちょうど2つ存在し,題意を満たす.
    g\left(s\right)=4s^3+\left(-6s-6\right)s^2+12s\cdot s-4s-t=-2s^3+6s^2-4s-t
    g\left(1\right)=4\cdot1^3+\left(-6s-6\right)\cdot1^2+12s\cdot1-4s-t=2s-t-2
    より,極大値もしくは極小値が0となるのは,
    -2s^3+6s^2-4s-t=0または,2s-t-2=0
    のとき.
    以上,(ⅰ)と(ⅱ)より,求める条件は,
    -2s^3+6s^2-4s-t=0または,2s-t-2=0(ただし,s\neq1)……(答)

2018年慶應大学経済学部|過去問徹底研究 大問5

2019.10.07

方針の立て方 (1) 上の点,上の点の両方を動かして解析しようとするととても複雑になる.そこで,題意を満たすのはどのような線分なのかを定性的に考える.すると,点からに垂線を引いたときを考えれば良いと分かる. (2) まずは,図を描いてみて情報を整理する. 円や球の接点に関する議論は,基本的には半径と

  • …続きを読む
  • 方針の立て方

    (1)
    S上の点,l上の点の両方を動かして解析しようとするととても複雑になる.そこで,題意を満たすのはどのような線分なのかを定性的に考える.すると,点\mathrm{O}からlに垂線を引いたときを考えれば良いと分かる.

    (2)
    まずは,図を描いてみて情報を整理する.
    円や球の接点に関する議論は,基本的には半径と接線が直交することを応用して,内積が0となることを利用する.本問もそれを使おうと考える.すると,点\mathrm{Q}についてはそれで上手くいくが,点\mathrm{P}\vec{\mathrm{OP}}と直交するベクトルの情報を出すことが難しい.そこで,別の図形的性質がないかを考える.すると,\mathrm{OP}\mathrm{AB}が平行であることが見つかるから,内積0の代わりにこれを使えばよいと分かる.
    後は\mathrm{P}\mathrm{Q}の座標を文字を使って表し,解析していく.

    (3)
    直円錐Cの体積を出すには,底面の半径と高さの情報が必要になると考える.底面の半径も高さも直接出すのは難しい(球面SC内の半端な位置にいるために難しい)から,分割して考える.前問で点\mathrm{P}\mathrm{Q}の座標を求めさせたことから,点\mathrm{P}\mathrm{Q}の箇所で分割(\mathrm{RP}\mathrm{PU}に分割)して考える.すると三角形\mathrm{ORP}で考えるという方針が立つ.\mathrm{PU}については,(1)の議論や前問で得た「\mathrm{OP}\mathrm{AB}が平行である」という知見を考えれば,\mathrm{OT}に変換して考えることが思いつく.すると,高さについては点\mathrm{T}で分割(\mathrm{AT}\mathrm{TU}に分割)して考えるという方針が立つ.

    解答例

    球面Sの方程式はx^2+y^2+z^2=1である.
    (1)
    題意を満たすS上の点は,原点から直線lに下ろした垂線(つまり,中心と直線の最短距離)と球面Sとの交点である(下図).

    lの方程式は,実数tを用いて\left(x,y,z\right)=\left(6,0,0\right)+t\left(3-6,-6-0,-6-0\right)=\left(6-3t,-6t,-6t\right)と書ける.
    よって,原点とl上の点との距離は,
    \sqrt{\left(6-3t\right)^2+\left(-6t\right)^2+\left(-6t\right)^2}=3\sqrt{9\left(t-\frac{2}{9}\right)^2+\frac{32}{9}}
    と書ける.9\left(t-\frac{2}{9}\right)^2+\frac{32}{9}t=\frac{2}{9}のとき最小値\frac{32}{9}を取るから,原点とl上の点を結ぶ線分の長さの最小値は,3\sqrt{\frac{32}{9}}=4\sqrt2である.
    よって,S上の点とl上の点を結ぶ線分の長さの最小値は,Sの半径が1であることから,4\sqrt2-1……(答)

    (2)

    〇点\mathrm{P}の座標
    線分\mathrm{PO}lは平行であるため,実数tを用いて\vec{\mathrm{OP}}=t\vec{\mathrm{AB}}=\left(-3t,-6t,-6t\right)とおける.
    また,点\mathrm{P}S上の点であるから,
    \left(-3t\right)^2+\left(-6t\right)^2+\left(-6t\right)^2=1\Leftrightarrow t=\pm\frac{1}{9}
    \vec{\mathrm{OP}}の方向と\vec{\mathrm{AB}}の方向は等しいため,t=\frac{1}{9}が適当.
    \therefore\mathrm{P}\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right)……(答)
    〇点\mathrm{Q}の座標
    \vec{\mathrm{OQ}}=\alpha\vec{\mathrm{OA}}+\beta\vec{\mathrm{OB}}=\left(6\alpha+3\beta,-6\beta,-6\beta\right)(\alpha,\betaは実数)と表せる.
    \mathrm{Q}S上の点であるため,
    \left(6\alpha+3\beta\right)^2+\left(-6\beta\right)^2+\left(-6\beta\right)^2=1\Leftrightarrow36\alpha^2+81\beta^2+36\alpha\beta=1……①
    また,\mathrm{OQ}\bot\mathrm{AQ}より,\vec{\mathrm{OQ}}\cdot\vec{\mathrm{AQ}}=0である.\vec{\mathrm{AQ}}=\vec{\mathrm{OQ}}-\vec{\mathrm{OA}}=\left(6\alpha+3\beta-6,-6\beta,-6\beta\right)であるから,
    \left(6\alpha+3\beta,-6\beta,-6\beta\right)\cdot\left(6\alpha+3\beta-6,-6\beta,-6\beta\right)=0\Leftrightarrow36\alpha^2+81\beta^2+36\alpha\beta-36\alpha-18\beta=0……②
    ①②を連立すれば,
    \left(\alpha,\beta\right)=\left(\frac{4\pm\sqrt{70}}{144},\frac{\mp\sqrt{70}}{72}\right)(複号同順)
    となる.
    \vec{\mathrm{OQ}}\vec{\mathrm{OA}},\vec{\mathrm{OB}}の方向を考えれば,0<\alpha,\beta<0であるから,
    \left(\alpha,\beta\right)=\left(\frac{4+\sqrt{70}}{144},-\frac{\sqrt{70}}{72}\right)
    が適当.
    \thereforeQ\left(\frac{1}{6},\frac{\sqrt{70}}{12},\frac{\sqrt{70}}{12}\right)……(答)

    (3)

    上図のように点\mathrm{R}\mathrm{T}\mathrm{U}を取る.
    \mathrm{OP}\mathrm{OQ}Sの半径に当たるから,\left|\vec{\mathrm{OP}}\right|=\left|\vec{\mathrm{OQ}}\right|=1である.
    \therefore\vec{\mathrm{OP}}\cdot\vec{\mathrm{OQ}}=\left|\vec{\mathrm{OP}}\right|\left|\vec{\mathrm{OQ}}\right|\cos{\angle\mathrm{POQ}}=\cos{\angle\mathrm{POQ}}
    また,前問の結果より\vec{\mathrm{OP}}=\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right),\vec{\mathrm{OQ}}=\left(\frac{1}{6},\frac{\sqrt{70}}{12},\frac{\sqrt{70}}{12}\right)であるから,
    \vec{\mathrm{OP}}\cdot\vec{\mathrm{OQ}}=\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right)\cdot\left(\frac{1}{6},\frac{\sqrt{70}}{12},\frac{\sqrt{70}}{12}\right)=-\frac{1+2\sqrt{70}}{18}
    これらより,
    \cos{\angle\mathrm{POQ}}=-\frac{1+2\sqrt{70}}{18}
    \angle\mathrm{POR}=\frac{1}{2}\angle\mathrm{POQ}より,
    \cos{\angle\mathrm{POR}}=\cos{\frac{1}{2}\angle\mathrm{POQ}}=\sqrt{\frac{1+\cos{\angle\mathrm{POQ}}}{2}}=\sqrt{\frac{1-\frac{1+2\sqrt{70}}{18}}{2}}=\frac{\sqrt{17-2\sqrt{70}}}{6}=\frac{\sqrt{10}-\sqrt7}{6}
    \therefore\tan{\angle\mathrm{POR}}=\sqrt{\frac{1}{\cos^2{\angle\mathrm{POR}}}-1}=\sqrt{\frac{1}{\left(\frac{\sqrt{10}-\sqrt7}{6}\right)^2}-1}=\sqrt{35}+4\sqrt2
    よって,
    \mathrm{RP}=\mathrm{OP}\tan{\angle\mathrm{POR}}=\sqrt{35}+4\sqrt2
    ところで,線分\mathrm{OT}(図中の点線)の長さは(1)の途中で求めた原点とl上の点との距離と等しく4\sqrt2である.また,\mathrm{PU}=\mathrm{OT}=4\sqrt2である.
    よって,Cの底面の半径(\mathrm{RU})は,
    \mathrm{RU}=\mathrm{RP}+\mathrm{PU}=\sqrt{35}+4\sqrt2+4\sqrt2=\sqrt{35}+8\sqrt2
    となる.更に線分\mathrm{OA}の長さは6であるから,三平方の定理より,
    \mathrm{AT}=\sqrt{{\mathrm{OA}}^2-{\mathrm{OT}}^2}=\sqrt{6^2-\left(4\sqrt2\right)^2}=2
    である.また,\mathrm{TU}=\mathrm{OP}=1であるから,Cの高さ(\mathrm{AU})は,
    \mathrm{AU}=\mathrm{AT}+\mathrm{TU}=2+1=3
    よって,求める体積は,
    \frac{1}{3}\cdot\pi\left(\sqrt{35}+8\sqrt2\right)^2\cdot3=\left(163+16\sqrt{70}\right)\pi……(答)

2018年慶應大学経済学部|過去問徹底研究 大問4

2019.10.07

方針の立て方 (1) 対数の底が揃っていないため,底を揃える.後は普通の対数方程式の計算である. (2) 計算するだけ. (3) とを実際に書き下す.2の累乗まで分解できるため,この2の累乗を消去すればよいと考える.との表式から,二式を足し引きすると,単純な2の累乗にできると判断する. 解答例 (1

  • …続きを読む
  • 方針の立て方

    (1)
    対数の底が揃っていないため,底を揃える.後は普通の対数方程式の計算である.

    (2)
    計算するだけ.

    (3)
    f\left(\alpha+\beta\right)g\left(\alpha+\beta\right)を実際に書き下す.2の累乗まで分解できるため,この2の累乗を消去すればよいと考える.f\left(x\right)g\left(x\right)の表式から,二式を足し引きすると,単純な2の累乗にできると判断する.

    解答例

    (1)
    真数条件より,\begin{cases} f\left(x\right)-2>0 \\ f\left(x-1\right)-\frac{3}{2}>0 \\ f\left(x\right)+g\left(x\right)-2>0 \end{cases}\Leftrightarrow\begin{cases} f\left(x\right)>2 \\ f\left(x-1\right)>\frac{3}{2} \\ f\left(x\right)+g\left(x\right)>2 \end{cases}\Leftrightarrow\begin{cases} 2^x+2^{-x}>2 \\ 2^{x-1}+2^{-\left(x-1\right)}>\frac{3}{2} \\ 2\cdot2^x>2 \end{cases}
    ここで,相加相乗平均の関係式より,
    2^x+2^{-x}\geqq2\sqrt{2^x\cdot2^{-x}}=2,2^{x-1}+2^{-\left(x-1\right)}\geqq2\sqrt{2^{x-1}\cdot2^{-\left(x-1\right)}}=2
    (等号成立は,それぞれ2^x=2^{-x}\Leftrightarrow x=0,2^{x-1}=2^{-\left(x-1\right)}\Leftrightarrow x=1)であるから,真数条件は,
    \begin{cases} x\neq0 \\ 2\cdot2^x>2 \end{cases}\Leftrightarrow\begin{cases} x\neq0 \\ x>0 \end{cases}\Leftrightarrow x>0
    となる.
    {\mathrm{log}}_\frac{1}{2}{\left\{f\left(x\right)-2\right\}}=\frac{{\mathrm{log}}_2{\left\{f\left(x\right)-2\right\}}}{{\mathrm{log}}_2{\frac{1}{2}}}=-{\mathrm{log}}_2{\left\{f\left(x\right)-2\right\}}
    2\log_4{\left\{f\left(x\right)+g\left(x\right)-2\right\}}=2\cdot\frac{\log_2{\left\{f\left(x\right)+g\left(x\right)-2\right\}}}{\log_2{4}}=\log_2{\left\{f\left(x\right)+g\left(x\right)-2\right\}}
    であるから,
    {\mathrm{log}}_\frac{1}{2}{\left\{f\left(x\right)-2\right\}}+\log_2{\left\{f\left(x-1\right)-\frac{3}{2}\right\}}+2\log_4{\left\{f\left(x\right)+g\left(x\right)-2\right\}}=1\Leftrightarrow-{\mathrm{log}}_2{\left\{f\left(x\right)-2\right\}}+\log_2{\left\{f\left(x-1\right)-\frac{3}{2}\right\}}+\log_2{\left\{f\left(x\right)+g\left(x\right)-2\right\}}=1\Leftrightarrow\log_2{\frac{\left\{f\left(x-1\right)-\frac{3}{2}\right\}\left\{f\left(x\right)+g\left(x\right)-2\right\}}{\left\{f\left(x\right)-2\right\}}}=1\Leftrightarrow\frac{\left\{f\left(x-1\right)-\frac{3}{2}\right\}\left\{f\left(x\right)+g\left(x\right)-2\right\}}{\left\{f\left(x\right)-2\right\}}=2\Leftrightarrow\left\{f\left(x-1\right)-\frac{3}{2}\right\}\left\{f\left(x\right)+g\left(x\right)-2\right\}=2\left\{f\left(x\right)-2\right\}\Leftrightarrow\left\{2^{x-1}+2^{-\left(x-1\right)}-\frac{3}{2}\right\}\left(2\cdot2^x-2\right)=2\left(2^x+2^{-x}-2\right)\Leftrightarrow\left(2^x\right)^3-6\left(2^x\right)^2+11\cdot2^x-6=0\Leftrightarrow\left(2^x-1\right)\left(2^x-2\right)\left(2^x-3\right)=0\Leftrightarrow2^x=1,2,3\Leftrightarrow x=0,1,{\mathrm{log}}_2{3}
    真数条件よりx=0は不可.
    よって,x=1,{\mathrm{log}}_2{3}……(答)

    (2)
    f\left(1\right)f\left(-1\right)+g\left(1\right)g\left(-1\right)=\left(2^1+2^{-1}\right)\left(2^{-1}+2^1\right)+\left(2^1-2^{-1}\right)\left(2^{-1}-2^1\right)=4……(答)

    (3)
    f\left(\alpha+\beta\right)=2^{\alpha+\beta}+2^{-\left(\alpha+\beta\right)}=2^\alpha\cdot2^\beta+2^{-\alpha}\cdot2^{-\beta} g\left(\alpha+\beta\right)=2^{\alpha+\beta}-2^{-\left(\alpha+\beta\right)}=2^\alpha\cdot2^\beta-2^{-\alpha}\cdot2^{-\beta}
    ここで,
    f\left(\alpha\right)=2^\alpha+2^{-\alpha},f\left(\beta\right)=2^\beta+2^{-\beta}
    g\left(\alpha\right)=2^\alpha-2^{-\alpha},g\left(\beta\right)=2^\beta-2^{-\beta}
    より,
    2^{\pm\alpha}=\frac{1}{2}\left\{f\left(\alpha\right)\pm g\left(\alpha\right)\right\}
    2^{\pm\beta}=\frac{1}{2}\left\{f\left(\beta\right)\pm g\left(\beta\right)\right\}
    であるから,
    f\left(\alpha+\beta\right)=\frac{1}{2}\left\{f\left(\alpha\right)+g\left(\alpha\right)\right\}\cdot\frac{1}{2}\left\{f\left(\beta\right)+g\left(\beta\right)\right\}+\frac{1}{2}\left\{f\left(\alpha\right)-g\left(\alpha\right)\right\}\cdot\frac{1}{2}\left\{f\left(\beta\right)-g\left(\beta\right)\right\}=\frac{1}{2}\left\{f\left(\alpha\right)f\left(\beta\right)+g\left(\alpha\right)g\left(\beta\right)\right\}……(答)
    g\left(\alpha+\beta\right)=\frac{1}{2}\left\{f\left(\alpha\right)+g\left(\alpha\right)\right\}\cdot\frac{1}{2}\left\{f\left(\beta\right)+g\left(\beta\right)\right\}-\frac{1}{2}\left\{f\left(\alpha\right)-g\left(\alpha\right)\right\}\cdot\frac{1}{2}\left\{f\left(\beta\right)-g\left(\beta\right)\right\}=\frac{1}{2}\left\{f\left(\alpha\right)g\left(\beta\right)+g\left(\alpha\right)f\left(\beta\right)\right\}……(答)

LINE

  • 偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 早稲田校舎 : 〒162-0045
    東京都新宿区馬場下町9-7 ハイライフホーム早稲田駅前ビル4階
    TEL: 03-6884-7991
    営業時間: 月〜土 13:00-21:30 
  • 武蔵小杉校舎 : 〒211-0068
    神奈川県川崎市中原区小杉御殿町2丁目67セラヴィ小杉ビル4F
    TEL:044-819-6333
    営業時間: 月〜土 13:00-21:30 
  • Facebook Twitter
    Page Top

Copyright © BETELGEUSE corporation All Rights Reserved.