偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 資料請求
  • カウンセリング
慶應経済2018

2018年慶應大学経済学部|過去問徹底研究 大問3

方針の立て方

(1)
数列の総和S_nからa_1を求めるには,普通a_1=S_1を用いるが,S_1を計算するとa_2が入ってしまうため,上手くいかないことに気付く.逆に,この失敗を活かすと,S_0を計算するとa_1が出てくると判断できる.そこで,S_0に関する考察を行う.
また,これを一般化すれば,S_nを使えばa_{n+1}を出せると分かる.\left\{a_n\right\}の漸化式はここから求めれば良い.ただし,S_nは用いることができないから,S_n-S_{n-1}=a_nとなることを用いてS_nを消去する.
後は普通の計算問題である.

(2)
前半((40))については,解答欄の形式からa_{k-1}を用いてはならないことからa_{k-1}を消去することをまず考える.更に解答欄の形式からa_kのみを使うことからa_{k-1}\rightarrow a_kの変換をすれば良いと判断する.この変換には漸化式を使えば良い.
後半((41)~(43))は,前半で導いた関係式をT_nを用いた式に変換する必要があるから,\sum_{k=1}^{n}{\left(k+1\right)a_k}\sum_{k=1}^{n+1}{ka_{k-1}},或いはこれに近い形を作り出す必要があると考える.そうすると,前半で導いた関係式の両辺の総和を取れば良いと判断できる.

(3)
③の式をT_nについて解けば,解答欄の左辺を得られる.解答欄の形式からS_n,a_nは使えないから,これらを消すために②と一般項:a_n=nr^{n-1}を用いる.

解答例

(31)1
(32)1
(33)1
(34)1
(35)1
(36)1
(37)1
(38)1
(39)0
(40)2
(41)2
(42)1
(43)0
(44)2
(45)1
(46)2
(47)2
(48)2
(49)1
(50)1
(51)3

解説

(1)
S_0=0=\frac{1-r^{0+1}}{\left(1-r\right)^2}-\frac{a_{0+1}}{1-r}=\frac{1-a_1}{1-r}\Leftrightarrow a_1=1……(答)
また,n\geqq1に対して,
a_n=S_n-S_{n-1}=\frac{1-r^{n+1}}{\left(1-r\right)^2}-\frac{a_{n+1}}{1-r}-\left(\frac{1-r^n}{\left(1-r\right)^2}-\frac{a_n}{1-r}\right)\Leftrightarrow a_{n+1}=ra_n+r^n……(答)
a_{n+1}=ra_n+r^nの両辺をr^nで割れば,
\frac{a_{n+1}}{r^n}=\frac{a_n}{r^{n-1}}+1\Leftrightarrow b_{n+1}=b_n+1
であるから,数列\left\{b_n\right\}は初項b_1=\frac{a_1}{r^{1-1}}=1,公差1の等差数列になる.……(答)
よって,
b_n=1+\left(n-1\right)\cdot1=n\Leftrightarrow\frac{a_n}{r^{n-1}}=n\Leftrightarrow a_n=nr^{n-1}……(答)
これを①に代入すれば,
S_n=\frac{1-r^{n+1}}{\left(1-r\right)^2}-\frac{\left(n+1\right)r^n}{1-r}=\frac{1-\left(n+1\right)r^n+nr^{n+1}}{\left(1-r\right)^2}……(答)

(2)
前問で求めた漸化式:a_{n+1}=ra_n+r^nより,a_{k-1}=\frac{a_k-r^{k-1}}{r}であるから,
\left(k+1\right)a_k-rka_{k-1}=\left(k+1\right)a_k-rk\cdot\frac{a_k-r^{k-1}}{r}=a_k+kr^{k-1}
更に前問で求めた一般項:a_n=nr^{n-1}より,kr^{k-1}=a_kであるから,
\left(k+1\right)a_k-rka_{k-1}=a_k+a_k=2a_k……(答)
最左辺と最右辺の1からnまでの総和を取ると,
\sum_{k=1}^{n}\left(\left(k+1\right)a_k-rka_{k-1}\right)=\sum_{k=1}^{n}{2a_k}\Leftrightarrow\sum_{k=1}^{n}{\left(k+1\right)a_k}-r\sum_{k=1}^{n}{ka_{k-1}}=2\sum_{k=1}^{n}a_k
ここで,
\sum_{k=1}^{n}{\left(k+1\right)a_k}=T_n
\sum_{k=1}^{n}{ka_{k-1}}=\sum_{k=1}^{n+1}{ka_{k-1}}-\left(n+1\right)a_n=T_n-\left(n+1\right)a_n
\sum_{k=1}^{n}a_k=S_n
より,
T_n-r\left\{T_n-\left(n+1\right)a_n\right\}=2S_n\Leftrightarrow\left(1-r\right)T_n=2S_n-r\left(n+1\right)a_n……(答)

(3)
(1)で求めた一般項:a_n=nr^{n-1}と②を③に代入して,
\left(1-r\right)T_n=2\cdot\frac{1-\left(n+1\right)r^n+nr^{n+1}}{\left(1-r\right)^2}-r\left(n+1\right)nr^{n-1}\Leftrightarrow T_n=\frac{1}{\left(1-r\right)^3}\left\{2-\left(n+1\right)\left(n+2\right)r^n+2n\left(n+2\right)r^{n+1}-n\left(n+1\right)r^{\ n+2}\right\}……(答)

【無料プレゼント】LINE友だち追加で5大特典プレゼント

LINE公式に登録することで素敵なプレゼントをお渡しします。

Published by

早慶専門個別指導塾HIRO ACADEMIA

偏差値30から早稲田慶應に合格するための日本で唯一の予備校です。 ただ覚えるだけの丸暗記では早稲田慶應に合格することはできません。 本ブログでは、当塾のメソッドでいかにして考えて早稲田慶應に合格することができるのかの一部をお伝えします。

PAGE TOP