偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 資料請求
  • カウンセリング
慶應経済2017

2017年慶應大学経済学部|過去問徹底研究 大問2

方針の立て方

(1)
f\left(0\right)の値については特筆事項なし.f\left(2\alpha\right)については,何とか\alpha,\betaに代入して,f\left(2\alpha\right)を作り出すことを考える.するとf\left(\alpha+\beta\right)f\left(2\alpha\right)となるようにすると,他の項はf\left(\alpha\right)f\left(0\right)となるから扱いやすい.

(2)(3)
典型問題であり特筆事項なし.回答欄の形式から,複雑な式は簡単にまとまるのではないかと考える.すると,2f\left(\alpha\right)f\left(\beta\right)=f\left(\alpha+\beta\right)+f\left(\alpha-\beta\right)を使うことが思いつく.

(4)については解説の通り.

解答例

(10)1
(11)2
(12)(13)-1
(14)(15)-2
(16)2
(17)2
(18)(19)-1
(20)2
(21)3
(22)2
(23)1
(24)(25)-1
(26)2
(27)1
(28)1
(29)(30)-1
(31)(32)01
(33)(34)-1
(35)2

解説

ronin
【早慶志望】浪人生向けおすすめ記事
  1. 早慶は浪人しても難しい!?
    根本的に変えていく必要性とその方法を伝授
  2. 【早慶浪人】伸びないのはなぜ?
    伸ばし方を説明
  3. ヒロアカの浪人生必勝必勝コース
    基礎から合格するための勉強法
  4. 【早慶浪人】年間スケジュール
    浪人生が早慶に合格するための計画の立て方とは
  5. 【早慶】女子浪人が絶対に合格には
    志望校に合格するためにやるべきこと紹介
  6. 【早慶】3月にやっておくこと
    早慶を目指す浪人生が絶対に3月にやっておくことを紹介

(1)
f\left(0\right)((10)について)
\alpha=\beta=0を代入すると,
f\left(0\right)\geqq1,2f\left(0\right)f\left(0\right)=f\left(0\right)+f\left(0\right)\Leftrightarrow f\left(0\right)\geqq1,f\left(0\right)=1
\therefore f\left(0\right)=1……(答)
f\left(2\alpha\right)((11)~(13)について)
\alpha=\betaを代入すると,f\left(0\right)=1より,
f\left(\alpha\right)\geqq1,2f\left(\alpha\right)f\left(\alpha\right)=f\left(2\alpha\right)+f\left(0\right)\Leftrightarrow f\left(\alpha\right)\geqq1,f\left(2\alpha\right)=2\left\{f\left(\alpha\right)\right\}^2-1
\therefore f\left(2\alpha\right)=2\left\{f\left(\alpha\right)\right\}^2-1……(答)

(2)
\left(x+\frac{1}{x}\right)^2=x^2+2+\frac{1}{x^2}\Leftrightarrow x^2+\frac{1}{x^2}=\left(x+\frac{1}{x}\right)^2-2……(答)
これと,f\left(2\alpha\right)=2\left\{f\left(\alpha\right)\right\}^2-1\Leftrightarrow\left\{f\left(\alpha\right)\right\}^2=\frac{f\left(2\alpha\right)+1}{2}より,
x^2+\frac{1}{x^2}=\left\{2f\left(\alpha\right)\right\}^2-2=4\left\{f\left(\alpha\right)\right\}^2-2=4\cdot\frac{f\left(2\alpha\right)+1}{2}-2=2f\left(2\alpha\right)……(答)

(3)
\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)=x^3+\frac{1}{x^3}+x+\frac{1}{x}\Leftrightarrow x^3+\frac{1}{x^3}=\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)-1\left(x+\frac{1}{x}\right)……(答)
これと,2f\left(\alpha\right)f\left(\beta\right)=f\left(\alpha+\beta\right)+f\left(\alpha-\beta\right)\alpha\rightarrow2\alpha,\beta\rightarrow\alphaとした式:2f\left(2\alpha\right)f\left(\alpha\right)=f\left(3\alpha\right)+f\left(\alpha\right)\Leftrightarrow f\left(3\alpha\right)=2f\left(2\alpha\right)f\left(\alpha\right)-f\left(\alpha\right)を用いれば,
x^3+\frac{1}{x^3}=2f\left(2\alpha\right)\cdot2f\left(\alpha\right)-1\cdot2f\left(\alpha\right)=2\left\{2f\left(2\alpha\right)f\left(\alpha\right)-f\left(\alpha\right)\right\}=2f\left(3\alpha\right)……(答)

(4)
(2)と(3)より,
x^n+\frac{1}{x^n}=2f\left(n\alpha\right)……(答)
が成り立つと推測できる.
n=k-1,kでの①の成立が仮定されているため,
x^{k-1}+\frac{1}{x^{k-1}}=2f\left(\left\{k-1\right\}\alpha\right)
x^k+\frac{1}{x^k}=2f\left(k\alpha\right)
が仮定されている.
ここで,
\left(x^k+\frac{1}{x^k}\right)\left(x+\frac{1}{x}\right)=x^{k+1}+\frac{1}{x^{k+1}}+x^{k-1}+\frac{1}{x^{k-1}}\Leftrightarrow x^{k+1}+\frac{1}{x^{k+1}}=\left(x^k+\frac{1}{x^k}\right)\left(x+\frac{1}{x}\right)-1\left(x^{k-1}+\frac{1}{x^{k-1}}\right)……(答)
と,2f\left(\alpha\right)f\left(\beta\right)=f\left(\alpha+\beta\right)+f\left(\alpha-\beta\right)で\alpha\rightarrow k\alpha,\beta\rightarrow\alphaとした式:2f\left(k\alpha\right)f\left(\alpha\right)=f\left(\left\{k+1\right\}\alpha\right)+f\left(\left\{k-1\right\}\alpha\right)\Leftrightarrow f\left(\left\{k+1\right\}\alpha\right)=2f\left(k\alpha\right)f\left(\alpha\right)-f\left(\left\{k-1\right\}\alpha\right)を用いれば,
x^{k+1}+\frac{1}{x^{k+1}}=2f\left(k\alpha\right)\cdot2f\left(\alpha\right)-1\cdot2f\left(\left\{k-1\right\}\alpha\right)=2\left[2f\left(k\alpha\right)f\left(\alpha\right)-f\left(\left\{k-1\right\}\alpha\right)\right]=2f\left(\left\{k+1\right\}\alpha\right)……(答)
が成り立つと分かる.

(5)
f\left(\left\{k+1\right\}\alpha\right)=2f\left(k\alpha\right)f\left(\alpha\right)-f\left(\left\{k-1\right\}\alpha\right)\Leftrightarrow f\left(k\alpha\right)=\frac{f\left(\left\{k-1\right\}\alpha\right)+f\left(\left\{k+1\right\}\alpha\right)}{2f\left(\alpha\right)}
より,
\sum_{k=1}^{n-1}f\left(k\alpha\right)=\sum_{k=1}^{n-1}\frac{f\left(\left\{k-1\right\}\alpha\right)+f\left(\left\{k+1\right\}\alpha\right)}{2f\left(\alpha\right)}=\frac{f\left(0\right)+f\left(\alpha\right)+2f\left(2\alpha\right)+2f\left(3\alpha\right)+\cdots\cdots+f\left(\left\{n-1\right\}\alpha\right)+f\left(n\alpha\right)}{2f\left(\alpha\right)}=\frac{2\sum_{k=1}^{n-1}f\left(k\alpha\right)+f\left(0\right)+f\left(n\alpha\right)-f\left(\alpha\right)-f\left(\left\{n-1\right\}\alpha\right)}{2f\left(\alpha\right)}\Leftrightarrow\sum_{k=1}^{n-1}f\left(k\alpha\right)=\frac{1-f\left(\alpha\right)-f\left(\left\{n-1\right\}\alpha\right)+f\left(n\alpha\right)}{2\left\{f\left(\alpha\right)-1\right\}}
f\left(0\right)=1を用いれば,
\therefore S_n=f\left(0\right)+\frac{1-f\left(\alpha\right)-f\left(\left\{n-1\right\}\alpha\right)+f\left(n\alpha\right)}{2\left\{f\left(\alpha\right)-1\right\}}=\frac{1-f\left(\alpha\right)+f\left(\left\{n-1\right\}\alpha\right)-f\left(n\alpha\right)}{2\left\{1-f\left(\alpha\right)\right\}}

【無料プレゼント】LINE友だち追加で5大特典プレゼント

LINE公式に登録することで素敵なプレゼントをお渡しします。

Published by

早慶専門個別指導塾HIRO ACADEMIA

偏差値30から早稲田慶應に合格するための日本で唯一の予備校です。 ただ覚えるだけの丸暗記では早稲田慶應に合格することはできません。 本ブログでは、当塾のメソッドでいかにして考えて早稲田慶應に合格することができるのかの一部をお伝えします。