方針の立て方
(ⅰ)
にはとが混じっているため,これを一つの三角関数にまとめることを考える.すると,三角関数の合成という解法が立つ.
(ⅱ)
実際にを求めてみて,その導出過程をで一般化すれば良い.数列の問題はいきなり抽象的なで計算するのではなく,最初はなどの小さい値でやってみると,解法が得やすい.漸化式が求まってしまえば,後は一般項に直して,問題文に沿って素直に不等式を立てれば良い.
(余談だが,この問題はニュートン法を題材にした問題である.)
解答例
(ⅰ)
(1)(2)(3)
(4)(5)
(6)(7)
(8)(9)
(ⅱ)
(10)(11)
(12)(13)
解説
(ⅰ)
三角関数の合成公式を用いれば,
である.であるから,で最大値を取り,で最小値を取る.
まとめると,
(ⅱ)
は帰納的に正である.つまり,.
より,点での接線の方程式はとなる.これと軸()との交点の座標がのため,
となる.に注意してこれを解くと,
……(答)
この漸化式を解く.は初項,公比の等比数列であるから,一般項は
となる.
よって,が以下であるには,
……(*)
であれば必要十分.
より,(*)は
となる.よって,求める自然数の最小値は,……(答)
Published by