偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 資料請求
  • 資料請求
  • カウンセリング
  • お電話
慶應理工2018

2018年慶應大学理工数学|過去問徹底研究 大問4

偏差値30からの早稲田慶應対策専門個別指導塾
HIRO ACADEMIA presents

方針の立て方

(1)
(ソ)について.角の情報を引き出す必要があるため,内積で攻める必要があると判断する.
(タ)と(チ)について.答えの形式から,\vec{\mathrm{OA}}\vec{\mathrm{OB}}の係数を文字で置くことから始める.すると,求める文字は2つのため,点\mathrm{C}に関する情報が2つ必要になるから,問題文から点\mathrm{C}に関する情報を2つ集める.
(ツ)について.\vec{\mathrm{OB}}\cdot\vec{\mathrm{OD}}のままでは埒が明かないため,一先ず変形を試みる.前問の結果を用いれば変形の仕方も容易に思いつく.

(2)
s,t,uの3文字からs,tの等式を導くため,一先ずuを消去することを考える.その後は,s,tの等式を立てるため,\vec{\mathrm{OA}}\vec{\mathrm{OB}}\vec{\mathrm{OC}}を消去する必要があるが,これにはベクトルの大きさで考えれば良いから,その方針で解く.

(3)
(ネ)~(ハ)について.前問でs,tを導入したこともあり,s,t中心で考えていくと上手くいくと考える.すると,\left|\vec{\mathrm{OQ}}\right|s,tで書き表せるため,s,tを動かしたときの最大値を考えればいいことが分かる.前問の結果を加味すれば線形計画法の考え方であると見抜ける.
(ヒ)について.典型的な四面体の体積問題である.「垂線と面が直交する」と,「垂線と面を構成する2ベクトル(基底ベクトルという)が垂直」が同値であることを利用する.

解答例

(1)
ソ:\frac{\pi}{3}
タ:\frac{3}{2}
チ:-\frac{1}{2}
ツ:9
(2)
テ:3
ト:0
ナ:-3
ニ:-3
ヌ:0
(3)
ネ:\frac{3+\sqrt3}{2}
ノ:\frac{1+\sqrt3}{2}
ハ:-1-\sqrt3
ヒ:\frac{3\sqrt6\left(2+\sqrt3\right)}{2}

解説

(1)
\angle\mathrm{AOB}(ソについて)
\mathrm{B}は図形S上の点のため,\left|\vec{\mathrm{OB}}\right|=\vec{\mathrm{OA}}\cdot\vec{\mathrm{OB}}=\left|\vec{\mathrm{OA}}\right|\left|\vec{\mathrm{OB}}\right|\cos{\angle\mathrm{AOB}}\Longleftrightarrow\cos{\angle\mathrm{AOB}}=\frac{1}{\left|\vec{\mathrm{OA}}\right|}=\frac{1}{2}
\therefore\angle\mathrm{AOB}=\frac{\pi}{3}……(答)
\vec{\mathrm{OC}}(タとチについて)
\vec{\mathrm{OC}}\mathrm{AB}上の点のため,\vec{\mathrm{OC}}=t\vec{\mathrm{OA}}+\left(1-t\right)\vec{\mathrm{OB}}(tは実数)と表せる.
\mathrm{C}は図形S上の点のため,\left|\vec{\mathrm{OC}}\right|=\vec{\mathrm{OA}}\cdot\vec{\mathrm{OC}}=t\left|\vec{\mathrm{OA}}\right|^2+\left(1-t\right)\vec{\mathrm{OA}}\cdot\vec{\mathrm{OB}}=4t+6\left(1-t\right)=-2t+6
\left|\vec{\mathrm{OC}}\right|^2=t^2\left|\vec{\mathrm{OA}}\right|^2+\left(1-t\right)^2\left|\vec{\mathrm{OB}}\right|^2+2t\left(1-t\right)\vec{\mathrm{OA}}\cdot\vec{\mathrm{OB}}=28t^2-60t+36
\therefore28t^2-60t+36=\left(-2t+6\right)^2\Leftrightarrow t=0,\frac{3}{2}
t=0では\vec{\mathrm{OC}}=\vec{\mathrm{OB}}となるため不適.よって,t=\frac{3}{2}
\therefore\vec{\mathrm{OC}}=\frac{3}{2}\vec{\mathrm{OA}}+\left(1-\frac{3}{2}\right)\vec{\mathrm{OB}}=\frac{3}{2}\vec{\mathrm{OA}}-\frac{1}{2}\vec{\mathrm{OB}}……(答)
\vec{\mathrm{OB}}\cdot\vec{\mathrm{OD}}(ツについて)
前問の結果を変形すると,
\vec{\mathrm{OB}}=3\vec{\mathrm{OA}}-2\vec{\mathrm{OC}}
\therefore\vec{\mathrm{OB}}\cdot\vec{\mathrm{OD}}=\left(3\vec{\mathrm{OA}}-2\vec{\mathrm{OC}}\right)\cdot\vec{\mathrm{OD}}=3\vec{\mathrm{OA}}\cdot\vec{\mathrm{OD}}-2\vec{\mathrm{OC}}\cdot\vec{\mathrm{OD}}=3\vec{\mathrm{OA}}\cdot\vec{\mathrm{OD}}\left(\because\vec{\mathrm{OC}}\bot\vec{\mathrm{OD}}\right)\bigm=3\left|\vec{\mathrm{OD}}\right|(\because\mathrm{D}は図形S上の点)=3\left|\vec{\mathrm{OC}}\right|=3\left(-2t+6\right)=9……(答)

(2)
s+t+u=1である.
\mathrm{Q}は図形S上の点のため,\left|\vec{\mathrm{OQ}}\right|^2=\left(\vec{\mathrm{OA}}\cdot\vec{\mathrm{OQ}}\right)^2=\left(s\left|\vec{\mathrm{OA}}\right|^2+t\vec{\mathrm{OA}}\cdot\vec{\mathrm{OB}}+u\vec{\mathrm{OA}}\cdot\vec{\mathrm{OD}}\right)^2\bigm=\left(4s+t\left|\vec{\mathrm{OB}}\right|+u\left|\vec{\mathrm{OD}}\right|\right)^2=\left(4s+6t+3u\right)^2\bigm=\left(3+s+3t\right)^2\left(\because s+t+u=1\right)\bigm=s^2+9t^2+6st+6s+18t+9
一方,
\left|\vec{\mathrm{OQ}}\right|^2=\left(s\vec{\mathrm{OA}}+t\vec{\mathrm{OB}}+u\vec{\mathrm{OD}}\right)^2=s^2\left|\vec{\mathrm{OA}}\right|^2+t^2\left|\vec{\mathrm{OB}}\right|^2+u^2\left|\vec{\mathrm{OD}}\right|^2+2st\vec{\mathrm{OA}}\cdot\vec{\mathrm{OB}}+2tu\vec{\mathrm{OB}}\cdot\vec{\mathrm{OD}}+2us\vec{\mathrm{OA}}\cdot\vec{\mathrm{OD}}\bigm=4s^2+36t^2+u^2\left|\vec{\mathrm{OD}}\right|^2+2st\left|\vec{\mathrm{OB}}\right|+18tu+2us\left|\vec{\mathrm{OD}}\right|=4s^2+36t^2+9u^2+12st+18tu+6us\bigm=7s^2+27t^2+6st-12s+9\left(\because s+t+u=1\right)
\therefore s^2+9t^2+6st+6s+18t+9=7s^2+27t^2+6st-12s+9\Leftrightarrow s^2+3t^2-3s-3t=0……(答)

(3)
\vec{\mathrm{OE}}(ネ~ハについて)

前問で求めたs,tの条件より,
s^2+3t^2-3s-3t=0\Leftrightarrow\left(s-\frac{3}{2}\right)^2+3\left(t-\frac{1}{2}\right)^2=3……①
また,(2)での議論より,\left|\vec{\mathrm{OQ}}\right|=3+s+3t
ここで,s+3t=kとおくと,t=-\frac{1}{3}s+\frac{1}{3}kであり,①の下でkが最大となるときを考えれば良い.
左図のように,線形計画法の要領で解くと,kの最大値は3+2\sqrt3と分かり,このとき,s=\frac{3+\sqrt3}{2},t=1+32となる.
s+t+u=1より,u=1-\frac{3+\sqrt3}{2}-\frac{1+\sqrt3}{2}=-1-\sqrt3となる.
\therefore\vec{\mathrm{OE}}=\frac{3+\sqrt3}{2}\vec{\mathrm{OA}}+\frac{1+\sqrt3}{2}\vec{\mathrm{OB}}+\left(-1-\sqrt3\right)\vec{\mathrm{OD}}……(答)

〇四面体\mathrm{OCDE}(ヒについて)
\vec{\mathrm{OC}}\bot\vec{\mathrm{OD}}より,\triangle\mathrm{OCD}=\frac{1}{2}\mathrm{OC}\cdot\mathrm{OD}=\frac{9}{2}
\mathrm{E}から\triangle\mathrm{OCD}への垂線の足を点\mathrm{H}とする.すると,\vec{\mathrm{EH}}\bot\triangle\mathrm{OCD}\Leftrightarrow\begin{cases} \vec{\mathrm{OC}}\cdot\vec{\mathrm{EH}}=0 \\ \vec{\mathrm{OD}}\cdot\vec{\mathrm{EH}}=0 \end{cases}
ここで,\alpha,\betaを実数として\vec{\mathrm{EH}}=\vec{\mathrm{OH}}-\vec{\mathrm{OE}}=\alpha\vec{\mathrm{OC}}+\beta\vec{\mathrm{OD}}-\vec{\mathrm{OE}}(つまり\vec{\mathrm{OH}}=\alpha\vec{\mathrm{OC}}+\beta\vec{\mathrm{OD}})とすると,(1)の結果より,\left|\vec{\mathrm{OC}}\right|=3であることに注意して,
\vec{\mathrm{OC}}\cdot\vec{\mathrm{EH}}=\vec{\mathrm{OC}}\cdot\left(\alpha\vec{\mathrm{OC}}+\beta\vec{\mathrm{OD}}-\vec{\mathrm{OE}}\right)=\alpha\left|\vec{\mathrm{OC}}\right|^2+\beta\vec{\mathrm{OC}}\cdot\vec{\mathrm{OD}}-\vec{\mathrm{OC}}\cdot\vec{\mathrm{OE}}\bigm=9\alpha-\vec{\mathrm{OC}}\cdot\left(\frac{3+\sqrt3}{2}\vec{\mathrm{OA}}+\frac{1+\sqrt3}{2}\vec{\mathrm{OB}}+\left(-1-\sqrt3\right)\vec{\mathrm{OD}}\right)\left(\because\vec{\mathrm{OC}}\bot\vec{\mathrm{OD}}\right)\bigm=9\alpha-\frac{3+\sqrt3}{2}\vec{\mathrm{OC}}\cdot\vec{\mathrm{OA}}-\frac{1+\sqrt3}{2}\vec{\mathrm{OC}}\cdot\vec{\mathrm{OB}}+\left(1+\sqrt3\right)\vec{\mathrm{OC}}\cdot\vec{\mathrm{OD}}\bigm=9\alpha-\frac{3+\sqrt3}{2}\left|\vec{\mathrm{OC}}\right|-\frac{1+\sqrt3}{2}\left(\frac{3}{2}\vec{\mathrm{OA}}-\frac{1}{2}\vec{\mathrm{OB}}\right)\cdot\vec{\mathrm{OB}}\bigm=9\alpha-\frac{3+\sqrt3}{2}\left|\vec{\mathrm{OC}}\right|-\frac{1+\sqrt3}{2}\left(\frac{3}{2}\left|\vec{\mathrm{OB}}\right|-\frac{1}{2}\left|\vec{\mathrm{OB}}\right|^2\right)\bigm=9\alpha+3\sqrt3
\vec{\mathrm{OD}}\cdot\vec{\mathrm{EH}}=\vec{\mathrm{OD}}\cdot\left(\alpha\vec{\mathrm{OC}}+\beta\vec{\mathrm{OD}}-\vec{\mathrm{OE}}\right)=\beta\left|\vec{\mathrm{OD}}\right|^2-\vec{\mathrm{OD}}\cdot\vec{\mathrm{OE}}\bigm=9\beta-\vec{\mathrm{OD}}\cdot\left(\frac{3+\sqrt3}{2}\vec{\mathrm{OA}}+\frac{1+\sqrt3}{2}\vec{\mathrm{OB}}+\left(-1-\sqrt3\right)\vec{\mathrm{OD}}\right)\bigm=9\beta-\frac{3+\sqrt3}{2}\vec{\mathrm{OA}}\cdot\vec{\mathrm{OD}}-\frac{1+\sqrt3}{2}\vec{\mathrm{OB}}\cdot\vec{\mathrm{OD}}+\left(1+\sqrt3\right)\left|\vec{\mathrm{OD}}\right|^2\bigm=9\beta-\frac{3+\sqrt3}{2}\left|\vec{\mathrm{OD}}\right|-\frac{1+\sqrt3}{2}\cdot9+\left(1+\sqrt3\right)\left|\vec{\mathrm{OD}}\right|^2=9\beta+3\sqrt3
\begin{cases} \vec{\mathrm{OC}}\cdot\vec{\mathrm{EH}}=0 \\ \vec{\mathrm{OD}}\cdot\vec{\mathrm{EH}}=0 \end{cases}\Leftrightarrow\begin{cases} 9\alpha+3\sqrt3=0 \\ 9\beta+3\sqrt3=0 \end{cases}\Leftrightarrow\begin{cases} \alpha=-\frac{\sqrt3}{3} \\ \beta=-\frac{\sqrt3}{3} \end{cases}
\therefore\vec{\mathrm{EH}}=-\frac{\sqrt3}{3}\vec{\mathrm{OC}}-\frac{\sqrt3}{3}\vec{\mathrm{OD}}-\vec{\mathrm{OE}}=-\frac{\sqrt3}{3}\vec{\mathrm{OC}}-\frac{\sqrt3}{3}\vec{\mathrm{OD}}-\left(\frac{3+\sqrt3}{2}\vec{\mathrm{OA}}+\frac{1+\sqrt3}{2}\vec{\mathrm{OB}}+\left(-1-\sqrt3\right)\vec{\mathrm{OD}}\right)\bigm=-\frac{3+2\sqrt3}{2}\vec{\mathrm{OA}}-\frac{3+2\sqrt3}{6}\vec{\mathrm{OB}}+\frac{3+2\sqrt3}{3}\vec{\mathrm{OD}}
\therefore\left|\vec{\mathrm{EH}}\right|=\sqrt{\left(-\frac{3+2\sqrt3}{2}\vec{\mathrm{OA}}-\frac{3+2\sqrt3}{6}\vec{\mathrm{OB}}+\frac{3+2\sqrt3}{3}\vec{\mathrm{OD}}\right)^2}=\sqrt{2\left(3+2\sqrt3\right)^2}=3\sqrt2+2\sqrt6
よって,四面体\mathrm{OCDE}の体積は,
\frac{1}{3}\cdot\frac{9}{2}\cdot\left(3\sqrt2+2\sqrt6\right)=\frac{3\sqrt6\left(2+\sqrt3\right)}{2}……(答)

LINE公式アカウント開始

LINE公式アカウントのみでの限定情報もお伝えします。ぜひご登録ください。

Published by

早慶専門個別指導塾HIRO ACADEMIA

偏差値30から早稲田慶應に合格するための日本で唯一の予備校です。 ただ覚えるだけの丸暗記では早稲田慶應に合格することはできません。 本ブログでは、当塾のメソッドでいかにして考えて早稲田慶應に合格することができるのかの一部をお伝えします。