偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 資料請求
  • カウンセリング

2017年慶応義塾大学総合政策|過去問徹底研究 大問3

2019.09.04

2017年慶應義塾大学総合政策|過去問徹底研究 大問3 方針の立て方 (1) 文字が3つと多いため,典型的な一文字固定法で考えていくのが妥当. (2) 前問の結果から,のときが答えだと当たりをつけて考えていく.のときに使える多変数の公式といえば,相加相乗平均の関係式であるから,試しに使ってみると,解

  • …続きを読む
  • 2017年慶應義塾大学総合政策|過去問徹底研究 大問3

    方針の立て方

    (1)
    文字が3つと多いため,典型的な一文字固定法で考えていくのが妥当.

    (2)
    前問の結果から,x=y=zのときが答えだと当たりをつけて考えていく.x=y=zのときに使える多変数の公式といえば,相加相乗平均の関係式であるから,試しに使ってみると,解法を得る.

    解答例

    (21)(22)(23)(24)(25)(26)……\frac{001}{162}
    (27)(28)(29)(30)(31)(32)(33)(34)……\frac{-7+05\sqrt{02}}{27}

    解説

    (1)
    AB=x,AD=y,AE=zとおく.すると,
    条件式:x+2y+3z=1となる.
    0<x,0<y,0<zより,0<z<\frac{1}{3}である.
    体積は,
    xyz=\left(1-2y-3z\right)yz=z\left\{-2y^2+\left(1-3z\right)y\right\}=z\left\{-2\left(y-\frac{1-3z}{4}\right)^2+\frac{\left(1-3z\right)^2}{8}\right\}\leqq\frac{{z\left(1-3z\right)}^2}{8}
    不等号の等号成立条件はy=\frac{1-3z}{4}である.
    ここで,f\left(z\right)=\frac{{z\left(1-3z\right)}^2}{8}=\frac{1}{8}\left(9z^3-6z^2+z\right)とおくと,f^\prime\left(z\right)=\frac{1}{8}\left(27z^2-12z+1\right)=\frac{\left(9z-1\right)\left(3z-1\right)}{8}
    増減表を描くと,

    z 0 \cdots \frac{1}{9} \cdots \frac{1}{3}
    f^\prime\left(z\right) + + 0 - 0
    f\left(z\right) 0 \nearrow \frac{1}{162} \searrow 0

    よって,f\left(z\right)\leqq f\left(\frac{1}{9}\right)=\frac{1}{162}
    ここで,
    \begin{cases} y=\frac{1-3z}{4} \\ z=\frac{1}{9} \end{cases}\Leftrightarrow\begin{cases} y=\frac{1}{6} \\ z=\frac{1}{9} \end{cases}
    となる.このとき,x=\frac{1}{3}となり,これらは全て適当である.
    よって,
    V=\frac{1}{162}……(答)

    (2)
    AB=x,AD=y,AE=zとおく.すると,
    条件式:x+y+z+\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=1となる.
    ここで,相加相乗平均の関係式
    x+y+z\geqq3\sqrt[3]{xyz} (等号成立はx=y=zのとき)
    であり,
    \sqrt{x^2+y^2}\geqq\sqrt{2\sqrt{x^2y^2}}=\sqrt{2xy} (等号成立はx=yのとき)
    \sqrt{y^2+z^2}\geqq\sqrt{2\sqrt{y^2z^2}}=\sqrt{2yz} (等号成立はy=zのとき)
    \sqrt{z^2+x^2}\geqq\sqrt{2\sqrt{z^2x^2}}=\sqrt{2zx} (等号成立はz=xのとき)
    であり,
    \sqrt{2xy}+\sqrt{2yz}+\sqrt{2zx}\geqq3\sqrt[3]{\sqrt{2xy}\cdot\sqrt{2yz}\cdot\sqrt{2zx}}=3\sqrt2\cdot\sqrt[3]{xyz} (等号成立は\sqrt{2xy}=\sqrt{2yz}=\sqrt{2zx}のとき)
    であることを用いると,
    1=x+y+z+\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}\geqq3\sqrt[3]{xyz}+\sqrt{2xy}+\sqrt{2yz}+\sqrt{2zx}\geqq3\sqrt[3]{xyz}+3\sqrt2\cdot\sqrt[3]{xyz}
    が成り立つ.等号成立はx=y=zのときであり,最左辺と最右辺に着目すると,
    \sqrt[3]{xyz}\leqq\frac{1}{3+3\sqrt2}
    \therefore xyz\leqq\frac{1}{\left(3+3\sqrt2\right)^3}=\frac{-7+5\sqrt2}{27}
    となる.xyzは考えている直方体の体積であることに注意されたい.
    さて,x=y=zのとき,条件式より,x+x+x+\sqrt{x^2+x^2}+\sqrt{x^2+x^2}+\sqrt{x^2+x^2}=1\Leftrightarrow x=\frac{\sqrt2-1}{3}となり,x=y=z=\frac{\sqrt2-1}{3}となる.これは適当である.よって,
    V=\frac{-7+5\sqrt2}{27}……(答)

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。

     

2017年慶応義塾大学総合政策|過去問徹底研究 大問2

2019.09.03

2017年慶應義塾大学総合政策|過去問徹底研究 大問2 方針の立て方 求めるものを未知数で置くという数学の基本解法に則り,まずは円Bの半径をと置こう.そして,「同じものを2通りの方法で表し,等式を作る」という方針を取る(この方針も数学では典型的な解法である). 次に円Aに関する情報が与えられているこ

  • …続きを読む
  • 2017年慶應義塾大学総合政策|過去問徹底研究 大問2

    方針の立て方

    求めるものを未知数で置くという数学の基本解法に則り,まずは円Bの半径をrと置こう.そして,「同じものを2通りの方法で表し,等式を作る」という方針を取る(この方針も数学では典型的な解法である).
    次に円Aに関する情報が与えられていることから,一つは円Aの半径(若しくは直径)を使う表現方法(本解答では,4r+2という表現が該当する)を考える.もう一つは,残りの円である円B,円C,円Dを使うことを考える(本解答では,\sqrt5r+2rという表現が該当する).
    数学では基本的には与えられた情報や設定は全部使うことを意識しよう.解法に詰まった時には,また使っていない情報を活用できないかを考えると打開策が見つかるかもしれない.

    解答例

    (9)(10)(11)(12)(13)(14)……04+02\sqrt{05}
    (15)(16)(17)(18)(19)(20)……18+08\sqrt{05}

    解説


    円Hの中心(点\mathrm{H}^\prime)から点Eの中心(点\mathrm{E}^\prime)を通る半径を引く.点\mathrm{E}^\primeから上図のように半円Hの弦に向かって垂線を引き,垂線の足を点Gとする.円Bの半径をrとすると,線分\mathrm{G}\mathrm{H}^\primeの長さはrとなる.また,円Eの半径が2rとなることから,線分\mathrm{E}^\prime\mathrm{G}の長さは2rである.よって,三平方の定理から線分\mathrm{E}^\prime\mathrm{H}の長さは,\sqrt5rとなる.よって,円Hの半径は\sqrt5r+2rと書ける.

    また,上図の点線に着目すると,円Hの半径は4r+2と書ける.
    よって,円Hの半径についての等式,
    \sqrt5r+2r=4r+2
    が成り立ち,これを解くことで,
    r=4+2\sqrt5……(答)
    よって,円Hの半径は,
    4r+2=4\left(4+2\sqrt5\right)+2=18+8\sqrt5……(答)

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。

2017年慶応義塾大学総合政策|数学過去問徹底研究 大問1

2019.09.03

2017年慶應義塾大学総合政策|過去問徹底研究 大問1 方針の立て方 全体的にの対称式であるから,基本対称式であるとを作り出していくことで解法を得る. 解答例 (1)(2)(3)(4)……0155 (5)(6)(7)(8)……1924 解説 について. は2次方程式:の解である.判別式はであり,これ

  • …続きを読む
  • 2017年慶應義塾大学総合政策|過去問徹底研究 大問1

    方針の立て方

    全体的にx,yの対称式であるから,基本対称式であるx+yxyを作り出していくことで解法を得る.

    解答例

    (1)(2)(3)(4)……0155
    (5)(6)(7)(8)……1924

    解説

    \begin{cases} xy+x+y=20 \\ xy\left(x+y\right)=91 \end{cases}\Leftrightarrow\left(x+y,xy\right)=\left(7,13\right),\left(13,7\right) \left(x+y,xy\right)=\left(7,13\right)について.
    x,yは2次方程式:\alpha^2-7\alpha+13=0の解である.判別式DD=7^2-4\cdot13=-30であり,これより,この2次方程式の解は実数解となる.\therefore\left(x+y,xy\right)=\left(13,7\right)
    x^2+y^2=\left(x+y\right)^2-2xy={13}^2-2\cdot7=155……(答)
    x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)={13}^3-3\cdot7\cdot13=1924……(答)

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。

2018年慶応義塾大学総合政策|過去問徹底研究 大問5

2019.09.03

2018年慶應義塾大学総合政策|過去問徹底研究 大問5 方針の立て方 各位の数字に着目していたり,桁と桁を比べたりしていることから,自然数というよりは,数字の並べ方の問題だととらえると処理しやすい.つまり,数字を1つ新しく加えることで,桁→桁に遷移すると考えるのである.自然数が3の倍数になる必要十分

  • …続きを読む
  • 2018年慶應義塾大学総合政策|過去問徹底研究 大問5

    方針の立て方

    各位の数字に着目していたり,n桁とn+1桁を比べたりしていることから,自然数というよりは,数字の並べ方の問題だととらえると処理しやすい.つまり,数字を1つ新しく加えることで,n桁→n+1桁に遷移すると考えるのである.自然数が3の倍数になる必要十分条件は,文系数学頻出のテーマのため覚えておくこと(他にも2,4,5の倍数になる条件は覚えておこう).(46)(47)(48)まで解けたら,後は典型的な漸化式の解法である.

    解答例
    (45)……5
    (46)……1
    (47)……2
    (48)……2
    (49)(50)……-1
    (51)(52)……02
    (53)(54)……05
    (55)(56)……02
    (57)(58)……-1
    (59)(60)……05
    (61)(62)……03

    解説

    〇(45)について
    各位の数が1,2,3,5,7のどれかとなれば必要十分.\therefore5^n……(答)

    〇(46)以降について
    各々の位の数字が1または素数となっているn+1桁の自然数は,各々の位の数字が1または素数となっているn桁の自然数に,1または素数をどこかの位に割り込ませた数字と見做せる.
    3の倍数となる必要十分条件が,各々の位の数字の和が3の倍数となることであることに注意すると,
    n桁の自然数が3で割り切れるとき…3をどこかの位に割り込ませれば,n+1桁の自然数も3で割り切れる.
    n桁の自然数が3で割ると1余る数のとき…2か5をどこかの位に割り込ませれば,n+1桁の自然数も3で割り切れる.
    n桁の自然数が3で割ると2余る数のとき…1か7をどこかの位に割り込ませれば,n+1桁の自然数も3で割り切れる.
    よって,a_n+2b_n+2c_n=a_{n+1}……(答)
    また,a_n+2b_n+2c_n=a_{n+1}\Leftrightarrow a_{n+1}=a_n+2\left(b_n+c_n\right)であること,①\Leftrightarrow b_n+c_n=5^n-a_nであることから,b_n+c_nを消去して,
    a_{n+1}=a_n+2\left(5^n-a_n\right)\Leftrightarrow a_{n+1}=-a_n+2\cdot5^n……(答)
    この漸化式を解く.両辺を5^{n+1}で割って,
    \frac{a_{n+1}}{5^{n+1}}=-\frac{1}{5}\cdot\frac{a_n}{5^n}+\frac{2}{5}
    \frac{a_n}{5^n}=A_nと置くと,
    A_{n+1}=-\frac{1}{5}A_n+\frac{2}{5}\Leftrightarrow A_{n+1}-\frac{1}{3}=-\frac{1}{5}\left(A_n-\frac{1}{3}\right) \therefore A_n-\frac{1}{3}=\left(A_1-\frac{1}{3}\right)\cdot\left(-\frac{1}{5}\right)^{n-1}=\left(\frac{a_1}{5}-\frac{1}{3}\right)\cdot\left(-\frac{1}{5}\right)^{n-1}=\left(\frac{1}{5}-\frac{1}{3}\right)\cdot\left(-\frac{1}{5}\right)^{n-1}=\frac{2}{3}\left(-\frac{1}{5}\right)^n
    \therefore a_n=\left\{\frac{1}{3}+\frac{2}{3}\left(-\frac{1}{5}\right)^n\right\}\cdot5^n=\frac{2\left(-1\right)^n+5^n}{3}……(答)

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。

2018年慶応義塾大学総合政策|過去問徹底研究 大問4

2019.09.03

2018年慶應義塾大学総合政策|過去問徹底研究 大問4 方針の立て方 (1) 解に関する情報が与えられているので,解を文字で置くという解法を取ろう. 問題文ではとが問われているため,解と係数の関係を用いて,とを引っ張り出すのが都合がいいと考えると方針を得られる.の未知数5つに対して,解と係数の関係で

  • …続きを読む
  • 2018年慶應義塾大学総合政策|過去問徹底研究 大問4

    方針の立て方

    (1)
    解に関する情報が与えられているので,解を文字で置くという解法を取ろう.
    問題文ではabが問われているため,解と係数の関係を用いて,abを引っ張り出すのが都合がいいと考えると方針を得られる.\alpha,\beta,\gamma,a,bの未知数5つに対して,解と係数の関係で得られる方程式は5つあるため,この方程式を解きさえすれば答えが得られると判断し,後はひたすらに計算をする.

    (2)
    未知数がaの一文字だけなので,一先ずは3次方程式をなんとか解けないかと考える.すると,2次方程式の問題に帰着させられる.
    2次方程式に帰着させた後は,問題文で解のことが問われていることから,解の公式を使って,強引に解を表現することを試みる.後は必要条件で答えの候補を炙り出し,個々について十分性を検証することで,真の答えを絞り込んでいく.

    解答例
    (31)(32)(33)(34)……\frac{13}{04}
    (35)(36)(37)(38)……\frac{-3}{04}
    (39)(40)……04
    (41)(42)(43)(44)……\frac{02}{03}

    解説

    (1)
    共通解を\alpha,\betaとして,3次方程式のもう一つの解を\gammaとする.解と係数の関係から,
    \begin{cases} \alpha+\beta+\gamma=5 \\ \alpha\beta+\beta\gamma+\gamma\alpha=a \\ \alpha\beta\gamma=-3 \end{cases}
    \begin{cases} \alpha+\beta=1 \\ \alpha\beta=b \end{cases}
    これを解くと,
    \begin{cases} a=\frac{13}{4} \\ b=-\frac{3}{4} \end{cases}……(答)

    (2)
    3x^3-\left(a+1\right)x^2-4x+a=0\Leftrightarrow\left(x+1\right)\left\{3x^2-\left(a+4\right)x+a\right\}=0
    3x^2-\left(a+4\right)x+a=0の解は,
    x=\frac{a+4\pm\sqrt{\left(a+4\right)^2-12a}}{6}=\frac{a+4\pm\sqrt{a^2-4a+16}}{6}=\frac{a+4\pm\sqrt{\left(a-2\right)^2+12}}{6}
    よって,題意を満たすには,\left(a-2\right)^2+12=n^2(nは4以上の自然数)が必要.
    \left(a-2\right)^2+12=n^2\Leftrightarrow\left(n-a+2\right)\left(n+a-2\right)=12
    n-a+2とn+a-2はともに整数で,n+a-2\geqq3であるから,上式を満たす可能性があるのは,
    \begin{cases} n-a+2=4 \\ n+a-2=3 \end{cases},\begin{cases} n-a+2=3 \\ n+a-2=4 \end{cases},\begin{cases} n-a+2=2 \\ n+a-2=6 \end{cases},\begin{cases} n-a+2=1 n+a-2=12 \end{cases}
    の4つである.これらを解くと,順番に,
    \begin{cases} n=\frac{7}{2} \\ a=\frac{3}{2} \end{cases},\begin{cases} n=\frac{7}{2} \\ a=\frac{5}{2} \end{cases},\begin{cases} n=4 \\ a=4 \end{cases},\begin{cases} n=\frac{13}{2} \\ a=\frac{15}{2} \end{cases}
    n,aはともに整数であるから,適当なのは,\begin{cases} n=4 \\ a=4 \end{cases}のみ.これより,答えは,a=4のときで,整数ではない有理数解は\frac{2}{3}……(答)

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。

2018年慶応義塾大学総合政策 数学|過去問徹底研究 大問3

2019.09.03

2018年慶應義塾大学総合政策|数学過去問徹底研究 大問3 方針の立て方 どれも期待値の定義通りに計算するだけで解答が得られる.特筆事項なし. 解答例 (19)(20)(21)(22)…… (23)(24)(25)(26)…… (27)(28)(29)(30)…… 解説 (1) の期待値は,億円 の

  • …続きを読む
  • 2018年慶應義塾大学総合政策|数学過去問徹底研究 大問3

    方針の立て方

    どれも期待値の定義通りに計算するだけで解答が得られる.特筆事項なし.

    解答例

    (19)(20)(21)(22)……\frac{07}{08}
    (23)(24)(25)(26)……\frac{27}{64}
    (27)(28)(29)(30)……\frac{09}{16}

    解説
    (1)
    X_1の期待値は,\frac{5}{8}\cdot1+\frac{3}{8}\cdot0=\frac{5}{8}億円
    X_2の期待値は,\frac{1}{4}\cdot1+\frac{3}{4}\cdot0=\frac{1}{4}億円
    よって,S_1の期待値は,\frac{5}{8}+\frac{1}{4}=\frac{7}{8}億円……(答)

    (2)
    コインB,コインCの状態が,
    (表,表)となる確率は,\frac{5}{8}\cdot\frac{1}{4}=\frac{5}{32}であり,そのときS_1=2となる.
    (表,裏)となる確率は,\frac{5}{8}\cdot\frac{3}{4}=\frac{15}{32}であり,そのときS_1=1となる.
    (裏,表)となる確率は,\frac{3}{8}\cdot\frac{1}{4}=\frac{3}{32}であり,そのときS_1=1となる.
    (裏,裏)となる確率は,\frac{3}{8}\cdot\frac{3}{4}=\frac{9}{32}であり,そのときS_1=0となる.
    よって,Z_1の期待値は,
    \frac{5}{32}\left(2-\frac{7}{8}\right)^2+\frac{15}{32}\left(1-\frac{7}{8}\right)^2+\frac{3}{32}\left(1-\frac{7}{8}\right)^2+\frac{9}{32}\left(0-\frac{7}{8}\right)^2=\frac{27}{64}……(答)

    (3)
    ・コインAが表となる場合(その確率は\frac{1}{2})
    コインBを二回投げた結果が,
    (表,表)となる確率は,\frac{5}{8}\cdot\frac{5}{8}=\frac{25}{64}であり,そのときS_2=2となる.
    (表,裏)となる確率は,\frac{5}{8}\cdot\frac{3}{8}=\frac{15}{64}であり,そのときS_2=1となる.
    (裏,表)となる確率は,\frac{3}{8}\cdot\frac{5}{8}=\frac{15}{64}であり,そのときS_2=1となる.
    (裏,裏)となる確率は,\frac{3}{8}\cdot\frac{3}{8}=\frac{9}{64}であり,そのときS_2=0となる.
    ・コインAが裏となる場合(その確率は\frac{1}{2})
    コインCを二回投げた結果が,
    (表,表)となる確率は,\frac{1}{4}\cdot\frac{1}{4}=\frac{1}{16}であり,そのときS_2=2となる.
    (表,裏)となる確率は,\frac{1}{4}\cdot\frac{3}{4}=\frac{3}{16}であり,そのときS_2=1となる.
    (裏,表)となる確率は,\frac{3}{4}\cdot\frac{1}{4}=\frac{3}{16}であり,そのときS_2=1となる.
    (裏,裏)となる確率は,\frac{3}{4}\cdot\frac{3}{4}=\frac{9}{16}であり,そのときS_2=0となる.
    よって,Z_2の期待値は,
    \frac{1}{2}\left\{\frac{25}{64}\left(2-\frac{7}{8}\right)^2+\frac{15}{64}\left(1-\frac{7}{8}\right)^2+\frac{15}{64}\left(1-\frac{7}{8}\right)^2+\frac{9}{64}\left(0-\frac{7}{8}\right)^2\right\}+\frac{1}{2}\left\{\frac{1}{16}\left(2-\frac{7}{8}\right)^2+\frac{3}{16}\left(1-\frac{7}{8}\right)^2+\frac{3}{16}\left(1-\frac{7}{8}\right)^2+\frac{9}{16}\left(0-\frac{7}{8}\right)^2\right\}=\frac{9}{16}……(答)

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。

2018年慶応義塾大学総合政策|数学過去問徹底研究 大問2

2019.09.03

2018年慶應義塾大学総合政策|過去問徹底研究 大問2 方針の立て方 (1) 平易な問題のため特筆事項なし. (2) 実際に,対角線ACと接する円を考えると,題意を満たす範囲についてはすぐ分かる.次に面積を求めることになるが,題意を満たす図形は,辺の長さが不明な六角形であり,この面積を直接求めるのは

  • …続きを読む
  • 2018年慶應義塾大学総合政策|過去問徹底研究 大問2

    方針の立て方

    (1)
    平易な問題のため特筆事項なし.

    (2)
    実際に,対角線ACと接する円を考えると,題意を満たす範囲についてはすぐ分かる.次に面積を求めることになるが,題意を満たす図形は,辺の長さが不明な六角形であり,この面積を直接求めるのは難しい.そこで,長方形から三角形を2つ切り出すという解法にシフトする.

    (3)
    題意を満たす範囲については,(2)の対称性で考えればすぐに分かる.本問でもやはり題意を満たす図形の面積を直接求めるのは難しいため,三角形を切り出すという解法にシフトする.対称性から,切り出す三角形は二等辺三角形であることを見抜きたい.4つの三角形に関して分かる情報は底辺の長さだけであるから,4つの三角形だけに囚われず,12や9など,元から分かっている長さの情報が活用できないかを考える.すると本解の\tan{\varphi}を特定する方針が立つ.

    解答例
    (7)(8)(9)……140
    (10)(11)(12)……032
    (13)(14)(15)(16)(17)(18)……\frac{359}{006}

    解説

    (1)

    上図の斜線部が題意を満たす.
    \therefore10\times14=140……(答)

    (2)

    左上図の斜線部が題意を満たす.ここで,右上図のように,対角線ACと辺BCと接する半径1の円の中心をI,対角線ACと辺CDと接する半径1の円の中心をJとする.また,直線CIと辺AB,直線CFと辺DAの交点を,それぞれE,Fとする.更にIから辺BCへの垂線の足をG,Jから辺CDへの垂線の足をHとする.
    ここでCGとCHの長さを求める.
    まず,対角線ACの長さは,三平方の定理より20である.
    また,\angleACE=\angleECB,∠ACF=∠FCDが成り立つから,角の二等分線の定理より,
    AE\colonEB=20\colon16,AF\colonFD=20\colon12が成り立つ.これより,EB=\frac{16}{3},FD=6と分かる.
    更に,\triangleEBC\backsim\triangleIGC,△FCD∽△JCHより,相似比から,CG=3,CH=2と分かる.
    よって,左上図について長さの情報を足すと,下図となる.

    上図より,(1)で求めた図形から,12\times9の直角三角形を2つ取り除いた図形であることが分かる.よって,求める面積は,
    140-2\cdot\frac{1}{2}\cdot12\cdot9=32……(答)

    (3)

    題意を満たす領域は上図の斜線部.
    前問と同様に(1)で求めた図形から,三角形を4つ取り除いた図形と見做して考える.
    上図のように角度\varphiを取ると,\tan{\varphi}=\frac{12}{9}=\frac{4}{3}となる.このことより,右側の三角形の面積は,
    2\times\frac{1}{2}\cdot4\cdot4\tan{\varphi}=\frac{64}{3}
    となる.他の3つの三角形も同様に面積を求めることができて,左の三角形の面積は\frac{64}{3},上下の三角形の面積はそれぞれ\frac{75}{4}.これより,求める面積は,
    140-2\cdot\frac{64}{3}-2\cdot\frac{75}{4}=\frac{359}{6}……(答)

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。

2018年慶応義塾大学総合政策 数学|過去問徹底研究 大問1

2019.09.03

2018年慶應義塾大学総合政策|過去問徹底研究 大問1 方針の立て方 (1) 実際に題意を満たすつなげかたを探すことで方針を得る. (2) 「おはじきが取り除かれた」ことが前問の場合とどういう違いを与えるかを考える.おはじきが取り除かれれば,その場所のおはじきをつなげることができなくなるということだ

  • …続きを読む
  • 2018年慶應義塾大学総合政策|過去問徹底研究 大問1

    方針の立て方

    (1)
    実際に題意を満たすつなげかたを探すことで方針を得る.

    (2)
    「おはじきが取り除かれた」ことが前問の場合とどういう違いを与えるかを考える.おはじきが取り除かれれば,その場所のおはじきをつなげることができなくなるということだから,前問の場合と比べて,いくつかの読み方ができなくなるということである.それを考えると余事象から攻めるのがカギだと分かる.

    解答例

    (1)(2)(3)……252
    (4)(5)(6)……152

    解説
    (1)

    上図のように考えれば,左上からスタートして下か右にしか移動せず右下にいくと考えて,10回の移動の何回目に下に移動するかを考えれば,求める場合の数は,
    _{10}\mathrm{C}_5=\frac{10!}{5!5!}=252通り……(答)

    (2)
    余事象で考える.
    前問の図で左から3番目,上から4番目のおはじきを通る経路を考えると,
    {_5^}\mathrm{C}_3\times{_5^}\mathrm{C}_2=\frac{5!}{3!2!}\times\frac{5!}{2!3!}=100通り
    よって,求める場合の数は,
    252-100=152通り……(答)

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。

2016年早稲田大学理工|過去問徹底研究 大問5

2019.09.03

2016年早稲田大学理工|過去問徹底研究 大問5 方針の立て方 (1) 問題で与えられた条件を書き下すのみ.点Pに関する条件は,線分APの長さが2のみであるため,これを書き下す.すると,の式となるため,の条件を加えて図示すれば答えとなる. (2) 立体図形上の点に関する問題であるため,ベクトルで考え

  • …続きを読む
  • 2016年早稲田大学理工|過去問徹底研究 大問5

    方針の立て方

    (1)
    問題で与えられた条件を書き下すのみ.点Pに関する条件は,線分APの長さが2のみであるため,これを書き下す.すると,a,bの式となるため,a,bの条件a\geqq0,b\geqq0を加えて図示すれば答えとなる.

    (2)
    立体図形上の点に関する問題であるため,ベクトルで考える.後は自分で置いた文字(本解答の場合にはk)を消去すること(kにも条件がついていることに注意!)と,問題で与えられた条件a\geqq0,b\geqq0を加えれば答えとなる.

    (3)
    切り口は円であるため,半径を求めればよい.半径は原点と最遠点との距離になる.最遠点は自明に図形F上にあるので,図形F上の点を文字で表し,その最大値を求めればよい.

    (4)
    積分するだけ.

    解答例

    (1)
    APの長さが2のため,3+a^2+b^2=4\Leftrightarrow a^2+b^2=1
    a\geqq0,b\geqq0で図示すると,

    (上図が答え)

    (2)
    AP上の点Qは,\vec{\mathrm{OQ}}=\vec{\mathrm{OA}}+k\vec{\mathrm{AP}} \left(0\leqq k\leqq1\right)を満たす.
    \therefore\left(x,y,z\right)=\left(0,0,\sqrt3\right)+k\left(a,b,-\sqrt3\right)
    \therefore\begin{cases} x=ka \\ y=kb \\ z=\sqrt3-\sqrt3k \end{cases}
    上二式より,k=\sqrt{x^2+y^2}0\leqq k\leqq1より,0\leqq x^2+y^2\leqq1.また,a\geqq0,b\geqq0より,x\geqq0,y\geqq0
    \therefore z=\sqrt3-\sqrt{3\left(x^2+y^2\right)} (0\leqq x^2+y^2\leqq1かつx\geqq0かつy\geqq0)……(答)

    (3)
    Fx=tで切ったとき,点\left(t,0,0\right)から最も遠い点を考える.
    Fx=tの交線上の点は,
    \left(x,y,z\right)=\left(t,y,\sqrt3-\sqrt{3\left(t^2+y^2\right)}\right) (ただし,0\leqq t^2+y^2\leqq1かつt\geqq0かつy\geqq0)と表せる.
    \left(t,0,0\right)との距離は,\sqrt{y^2+3+3\left(t^2+y^2\right)-6\sqrt{t^2+y^2}}=\sqrt{4y^2-6\sqrt{t^2+y^2}+3t^2+3}
    f\left(y\right)=4y^2-6\sqrt{t^2+y^2}とおくと,
    f^\prime\left(y\right)=8y-\frac{6y}{\sqrt{t^2+y^2}}=\frac{2y\left(4\sqrt{t^2+y^2}-3\right)}{\sqrt{t^2+y^2}}
    \therefore y=\begin{cases} 0\left(\frac{3}{4}\leqq t\leqq1\right) \\ 0,\sqrt{\frac{9}{16}-t^2}\left(0\leqq t\leqq\frac{3}{4}\right) \end{cases}f^\prime\left(y\right)=0
    \frac{3}{4}\leqq t\leqq1のときf^\prime\left(y\right)\geqq0となり,距離の最大値はy=\sqrt{1-t^2}のときの\sqrt{1-t^2}となる.
    0\leqq t\leqq\frac{3}{4}のとき,増減表を描くと,

    y 0 \cdots \sqrt{\frac{9}{16}-t^2} \cdots \sqrt{1-t^2}
    f^\prime\left(y\right) 0 - 0 + +
    f\left(y\right) \searrow \nearrow

    よって,最大値となりうるのはy=0y=\sqrt{1-t^2}のとき.
    y=0のとき,距離は,\sqrt{3t^2-6t+3}=\sqrt3\left(1-t\right)となり,y=\sqrt{1-t^2}のとき,距離は,\sqrt{1-t^2}となる.
    3t^2-6t+3\leqq1-t^2\Leftrightarrow\frac{1}{2}\leqq t\leqq1より,距離の最大値は,
    \begin{cases} \sqrt3\left(1-t\right)\ \left(0\leqq t\leqq\frac{1}{2}\right) \\ \sqrt{1-t^2}\ \left(\frac{1}{2}\leqq t\leqq\frac{3}{4}\right) \end{cases}
    \frac{3}{4}\leqq t\leqq1のときの結果と合わせると,距離の最大値は,
    \begin{cases} \sqrt3\left(1-t\right) \left(0\leqq t\leqq\frac{1}{2}\right) \\ \sqrt{1-t^2} \left(\frac{1}{2}\leqq t\leqq1\right) \end{cases}
    \therefore S\left(t\right)=\begin{cases} \pi\left\{\sqrt3\left(1-t\right)\right\}^2=3\pi\left(1-t\right)^2 \left(0\leqq t\leqq\frac{1}{2}\right) \\ \pi\left(\sqrt{1-t^2}\right)^2=\pi\left(1-t^2\right) \left(\frac{1}{2}\leqq t\leqq1\right) \end{cases}……(答)

    (4)
    V=\int_{0}^{1}S\left(t\right)dt=\int_{0}^{\frac{1}{2}}{3\pi\left(1-t\right)^2}dt+\int_{\frac{1}{2}}^{1}\pi\left(1-t^2\right)dt=\left[-\pi\left(1-t\right)^3\right]_0^{\frac{1}{2}}+\left[\pi\left(t-\frac{1}{3}t^3\right)\right]_{\frac{1}{2}}^1=\frac{13}{12}\pi……(答)

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。

2016年早稲田大学理工|過去問徹底研究 大問4

2019.09.03

2016年早稲田大学理工|過去問徹底研究 大問4 方針の立て方 (1) 「接線の問題は接点から始める」という基本的な解法から考える. (2)(3)は典型的な三次関数と接線の問題であり特筆事項なし. 解答例 (1) よって,接点での接線は, ……(答) (2) 三次関数に複接線が存在しないことに注意す

  • …続きを読む
  • 2016年早稲田大学理工|過去問徹底研究 大問4

    方針の立て方

    (1)
    「接線の問題は接点から始める」という基本的な解法から考える.

    (2)(3)は典型的な三次関数と接線の問題であり特筆事項なし.

    解答例

    (1)
    f^\prime\left(x\right)=3x^2-1
    よって,接点\left(t,t^3-t\right)での接線は,
    y=\left(3t^2-1\right)x-2t^3
    \therefore\begin{cases} m=3t^2-1\Leftrightarrow t=\pm\sqrt{\frac{m+1}{3}}\left(m\geqq-1\right) \\ -mp+q=-2t^3 \end{cases}
    \therefore q=mp\pm2\left(\frac{m+1}{3}\right)^\frac{3}{2} \left(m\geqq-1\right)……(答)

    (2)
    三次関数に複接線が存在しないことに注意すれば,(1)の接線の方程式に\left(p,q\right)を代入したtについての三次方程式:q=\left(3t^2-1\right)p-2t^3の解が相異なる3つの実数解となれば必要十分.
    f\left(t\right)=2t^3-3pt^2+p+q((右辺)̠-(左辺))として,f\left(t\right)が極大値と極小値をもち,かつ,その2つの符号が正,負(異符号)であれば必要十分.
    f^\prime\left(t\right)=6t^2-6pt=6t\left(t-p\right)
    \therefore p\neq0かつ,f\left(0\right)f\left(p\right)<0\Leftrightarrow\left(p+q\right)\left(-p^3+p+q\right)<0
    p=0のとき,\left(p+q\right)\left(-p^3+p+q\right)=q^2\geqq0より,p\neq0という条件は\left(p+q\right)\left(-p^3+p+q\right)<0に内包される.
    \therefore\left(p+q\right)\left(-p^3+p+q\right)<0……(答)

    (3)
    前問の結果より,図示すべき条件は,
    \begin{cases} p+q<0 \\ -p^3+p+q>0 \end{cases}
    または
    \begin{cases} p+q>0 \\ -p^3+p+q<0 \end{cases}
    これを図示すると,下図.
    但し境界は含まない.

    (上図が答え)

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。


  • 偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 早稲田校舎 : 〒162-0045
    東京都新宿区馬場下町9-7 ハイライフホーム早稲田駅前ビル4階
    TEL: 03-6884-7991
    営業時間: 月〜土 9:00-21:30 
  • Facebook Twitter
    Page Top

Copyright © BETELGEUSE corporation All Rights Reserved.