偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 資料請求
  • カウンセリング

2017年早稲田大学理工|過去問徹底研究 大問2

2019.09.03

早稲田大学理工過去問徹底研究 2017年 大問2 方針の立て方 (1)基本問題であるため特筆事項なし. (2)絶対値問題の初動捜査である符号の変わり目で場合分け(分割)を行う. (3)典型的な微分法の最大最小問題であり特筆事項なし. 解答例 (1) よって,増減表を描くと, また,で軸と交わる. よ

  • …続きを読む
  • 早稲田大学理工過去問徹底研究 2017年 大問2

    方針の立て方

    (1)基本問題であるため特筆事項なし.
    (2)絶対値問題の初動捜査である符号の変わり目で場合分け(分割)を行う.
    (3)典型的な微分法の最大最小問題であり特筆事項なし.

    解答例

    (1)
    f^\prime\left(x\right)=-ae^{-a\left(x-2\right)}-a\left(2-ax\right)e^{-a\left(x-2\right)}=a\left(ax-3\right)e^{-a\left(x-2\right)}
    よって,増減表を描くと,

    x \cdots \frac{3}{a} \cdots
    f^\prime\left(x\right) - 0 \mathrm{+}
    f\left(x\right) \searrow -e^{2a-3} \nearrow

    \lim_{x\rightarrow-\infty}{f\left(x\right)}=\infty
    \lim_{x\rightarrow\infty}{f\left(x\right)}=0
    また,x=\frac{2}{a}x軸と交わる.
    よって,
    (上図が答え)

    (2)
    p=\frac{3}{a}である.x=\frac{2}{a}f\left(x\right)が正から負に符号変化することに注意すると,
    S=\int_{0}^{\frac{2}{a}}f\left(x\right)dx+\int_{\frac{2}{a}}^{\frac{3}{a}}\left\{-f\left(x\right)\right\}dx
    ここで,
    \int f\left(x\right)dx=\int{2e^{-a\left(x-2\right)}}dx+\int{\left(-ax\right)e^{-a\left(x-2\right)}}dx\bigm=-\frac{2}{a}e^{-a\left(x-2\right)}+xe^{-a\left(x-2\right)}-\int e^{-a\left(x-2\right)}dx(第2項に部分積分)=-\frac{2}{a}e^{-a\left(x-2\right)}+xe^{-a\left(x-2\right)}+\frac{1}{a}e^{-a\left(x-2\right)}+C\bigm=\left(x-\frac{1}{a}\right)e^{-a\left(x-2\right)}+C(Cは積分定数)
    \therefore S=\left[\left(x-\frac{1}{a}\right)e^{-a\left(x-2\right)}\right]_0^{\frac{2}{a}}-\left[\left(x-\frac{1}{a}\right)e^{-a\left(x-2\right)}\right]_{\frac{2}{a}}^{\frac{3}{a}}=\frac{e^{2a}}{a}\left(1+2e^{-2}-2e^{-3}\right)……(答)

    (3)
    1+2e^{-2}-2e^{-3}>0に注意して,\frac{e^{2a}}{a}の最小値を考える.
    g\left(a\right)=\frac{e^{2a}}{a}とする.
    g^\prime\left(a\right)=\frac{\left(2a-1\right)e^{2a}}{a^2}
    増減表を描くと,

    a \cdots \frac{1}{2} \cdots
    g^\prime\left(a\right) - 0 \mathrm{+}
    g\left(a\right) \searrow 最小 \nearrow

    よって,Sを最小にするaの値は,a=\frac{1}{2}……(答)

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。

2017年早稲田大学理工|過去問徹底研究 大問1

2019.09.03

早稲田大学理工過去問徹底研究 2017年 大問1 方針の立て方 (1) 消すべき文字はであるが,はPQ上の点を代入することで消滅するため,実質消去すべき文字はのみである.そのため,二点を代入して,連立方程式として解けばよいことが分かる. (2) への変換であるため,をの式に書き直せばよい. (3)

  • …続きを読む
  • 早稲田大学理工過去問徹底研究 2017年 大問1

    方針の立て方

    (1)
    消すべき文字はz,\bar{z},\bar{\beta}であるが,z,\bar{z}はPQ上の点を代入することで消滅するため,実質消去すべき文字は\bar{\beta}のみである.そのため,二点を代入して,連立方程式として解けばよいことが分かる.

    (2)
    z\rightarrow wへの変換であるため,zwの式に書き直せばよい.

    (3)
    \trianglePQRの内部を求める問題であるが,\trianglePQRの辺(領域の境界)について考え,その内部と考えればよい.複素共役は複素数平面では実軸対称性を持つことに注意すると,余計な計算をしないで済む.

    解答例

    (1)
    z=1を通るので,\beta+\bar{\beta}+1=0
    z=\alphaを通るので,\beta\alpha+\bar{\beta}\bar{\alpha}+1=0
    二式から\bar{\beta}を削除して,
    \beta=\frac{1-\bar{\alpha}}{\bar{\alpha}-\alpha}=\frac{1-\left(\frac{1}{2}-\frac{\sqrt3}{6}i\right)}{\left(\frac{1}{2}-\frac{\sqrt3}{6}i\right)-\left(\frac{1}{2}+\frac{\sqrt3}{6}i\right)}=-\frac{1}{2}+\frac{\sqrt3}{2}i……(答)

    (2)
    z=\frac{1}{w}であるから,(1)のPQの式に代入して,
    \frac{\beta}{w}+\frac{\bar{\beta}}{\bar{w}}+1=0\Leftrightarrow\left(\bar{w}+\bar{\beta}\right)\left(w+\beta\right)=\beta\bar{\beta}\Leftrightarrow\left|w+\beta\right|^2=1\left(\because\beta\bar{\beta}=1\right)
    よって,-\betaを中心とする半径1の円……(答)

    (3)
    直線QRを表す式は,\frac{z+\bar{z}}{2}=\frac{1}{2}\Leftrightarrow z+\bar{z}=1である.
    z=\frac{1}{w}を代入すると,
    \frac{1}{w}+\frac{1}{\bar{w}}=1\Leftrightarrow\left(\bar{w}-1\right)\left(w-1\right)=1\Leftrightarrow\left|w-1\right|^2=1
    よって,直線QR上を点wが動くときの軌跡は,1を中心とする半径1の円.
    直線PR上を動くときは,直線PRが直線PQの複素共役であることを考えると,-\bar{\beta}を中心とする半径1の円.
    求める範囲は,(2)の円と,上記の2円の計3円で囲まれた領域であり,図示すると,

    また,面積については,

    上図のように考えれば,求める面積は,中心角\frac{2}{3}\piの扇形から,正三角形を取り除いた中心角\frac{1}{3}\piの扇形を2つ引いた面積と等しくなる(扇形の半径はどれも1)ため,
    \frac{1}{2}\cdot1^2\cdot\frac{2}{3}\pi-2\cdot\left(\frac{1}{2}\cdot1^2\cdot\frac{1}{3}\pi-\frac{1}{2}\cdot1\cdot1\cdot\sin{\frac{\pi}{3}}\right)=\frac{\sqrt3}{2}……(答)

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。

2018年早稲田大学理工|過去問徹底研究 大問4

2019.09.02

早稲田大学理工過去問徹底研究 2018年 大問4 方針の立て方 (1) 素直に微分すればよい. (2) (ⅰ)通常の極値問題と同様に微分して考えればよい. (ⅱ)これも典型的な回転体の体積の問題であるため特筆事項なし. (ⅲ)実際にをはじめの数項を書き出してみれば,数列の和の問題だと分かる. 解答例

  • …続きを読む
  • 早稲田大学理工過去問徹底研究 2018年 大問4

    方針の立て方

    (1)
    素直に微分すればよい.

    (2)
    (ⅰ)通常の極値問題と同様に微分して考えればよい.
    (ⅱ)これも典型的な回転体の体積の問題であるため特筆事項なし.
    (ⅲ)実際に\sum_{n=1}^{\infty}V_nをはじめの数項を書き出してみれば,数列の和の問題だと分かる.

    解答例

    (1)
    積の微分法則を使えば,
    f^\prime\left(x\right)=e^x\left(\cos{x}+\sin{x}\right)+e^x\left(-\sin{x}+\cos{x}\right)=2e^x\cos{x}……(答)

    (2)
    (ⅰ)
    積の微分法則と三角関数の合成を用いれば,
    g^\prime\left(x\right)=-\pi e^{-\pi x}\sin{\pi x}+\pi e^{-\pi x}\cos{\pi x}=\pi e^{-\pi x}\left(\cos{\pi x}-\sin{\pi x}\right)=\sqrt2\pi e^{-\pi x}\sin{\left(\pi x+\frac{3}{4}\pi\right)}
    よって,g^\prime\left(x\right)=0となるのは,\pi x+\frac{3}{4}\pi=n\pi\Leftrightarrow x=n-\frac{3}{4}(nは任意の整数)のとき.
    nが偶数のとき,その前後でg^\prime\left(x\right)の符号は負から正となる.故に極小値は,g\left(n-\frac{3}{4}\right)=-\frac{\sqrt2}{2}e^{-\left(n-\frac{3}{4}\right)\pi}
    nが奇数のとき,その前後でg^\prime\left(x\right)の符号は正から負となる.故に極大値は,g\left(n-\frac{3}{4}\right)=\frac{\sqrt2}{2}e^{-\left(n-\frac{3}{4}\right)\pi}
    よって,mを任意の整数として,
    極大値は22e-2m+14\pi……(答)
    極小値は-22e-2m-34\pi……(答)
    (ⅱ)
    V_n=\int_{n-1}^{n}{\pi\left\{g\left(x\right)\right\}^2}dx=\int_{n-1}^{n}{\pi e^{-2\pi x}{\mathrm{sin}}^2\pi x}dx=\int_{n-1}^{n}{\pi e^{-2\pi x}\cdot\frac{1-\mathrm{cos} {2\pi x}}{2}}dx=\int_{n-1}^{n}{\frac{1}{2}\pi e^{-2\pi x}}dx-\frac{1}{2}\int_{n-1}^{n}{\pi e^{-2\pi x}\mathrm{cos} {\left(-2\pi x\right)}}dx
    ここで,
    \int_{n-1}^{n}{\frac{1}{2}\pi e^{-2\pi x}}dx=\left[-\frac{1}{4}e^{-2\pi x}\right]_{n-1}^n=-\frac{1}{4}e^{-2n\pi}+\frac{1}{4}e^{-2\left(n-1\right)\pi}
    更に-2\pi x=yとして置換積分を行えば,
    \int_{n-1}^{n}{\pi e^{-2\pi x}\cos{\left(-2\pi x\right)}}dx=-\frac{1}{2}\int_{-2\left(n-1\right)\pi}^{-2n\pi}{e^y\cos{y}}dy\bigm=-\frac{1}{2}\left[\frac{1}{2}e^y\left(\cos{y}+\sin{y}\right)\right]_{-2\left(n-1\right)\pi}^{-2n\pi}\bigm=-\frac{1}{4}\left(e^{-2n\pi}-e^{-2\left(n-1\right)\pi}\right)
    である.
    \therefore V_n=-\frac{1}{4}e^{-2n\pi}+\frac{1}{4}e^{-2\left(n-1\right)\pi}-\frac{1}{2}\left\{-\frac{1}{4}\left(e^{-2n\pi}-e^{-2\left(n-1\right)\pi}\right)\right\}=\frac{1}{8}\left(e^{-2\left(n-1\right)\pi}-e^{-2n\pi}\right)……(答)
    (ⅲ)
    \sum_{n=1}^{\infty}V_n=\frac{1}{8}\left(e^{-2\cdot0\cdot\pi}-e^{-2\cdot1\cdot\pi}\right)+\frac{1}{8}\left(e^{-2\cdot1\cdot\pi}-e^{-2\cdot2\cdot\pi}\right)+\frac{1}{8}\left(e^{-2\cdot2\cdot\pi}-e^{-2\cdot3\cdot\pi}\right)+\cdots\cdots=\frac{1}{8}e^{-2\cdot0\cdot\pi}-\lim_{n\rightarrow\infty}{e^{-2n\pi}}=\frac{1}{8}……(答)
    (※無限等比級数の第2項と第3項,第4項と第5項,第6項と第7項,……が相殺される)
    (別解)
    V_n=\frac{1}{8}\left(e^{-2\left(n-1\right)\pi}-e^{-2n\pi}\right)=\frac{1}{8}\left(1-e^{-2\pi}\right)e^{-2\left(n-1\right)\pi}=\frac{1}{8}1-e-2\pi\cdote-2\pin-1は,初項\frac{1}{8}\left(1-e^{-2\pi}\right),公比e^{-2\pi}の等比数列 (なお,0<e^{-2\pi}<1である).
    \therefore\sum_{n=1}^{\infty}V_n=\frac{\frac{1}{8}\left(1-e^{-2\pi}\right)}{1-e^{-2\pi}}=\frac{1}{8}……(答)

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。

2018年早稲田大学理工|過去問徹底研究 大問3

2019.09.02

早稲田大学理工過去問徹底研究 2018年 大問3 方針の立て方 (1) 典型的な背理法の問題であるため特筆事項なし. (2) をかけるだけである.の形を作り出そうと考えると,この解法が思いつく. (3) 導くべき式にがないことから,を削除すればよいと判断する.使える式はとであるから,この2式を連立し

  • …続きを読む
  • 早稲田大学理工過去問徹底研究 2018年 大問3

    方針の立て方

    (1)
    典型的な背理法の問題であるため特筆事項なし.

    (2)
    \sqrt[3]{p}をかけるだけである.apの形を作り出そうと考えると,この解法が思いつく.

    (3)
    導くべき式に\left(\sqrt[3]{p}\right)^2がないことから,\left(\sqrt[3]{p}\right)^2を削除すればよいと判断する.使える式はa\left(\sqrt[3]{p}\right)^2+b\sqrt[3]{p}+c=0ap+b\left(\sqrt[3]{p}\right)^2+c\sqrt[3]{p}=0であるから,この2式を連立して消去する.

    (4)
    前問でわざわざ\sqrt[3]{p}でまとめたこと,(1)で\sqrt[3]{p}を無理数と証明したことから解法を得る.

    解答例

    (1)
    背理法で示す.
    \sqrt[3]{p}が有理数だと仮定して,\sqrt[3]{p}=\frac{b}{a}(a,bは互いに素な整数でa>0)とする.
    両辺を3乗して,p=\frac{b^3}{a^3}\Leftrightarrow pa^3=b^3
    ここで,b^3pの倍数である必要があるが,pが素数であることから,bpの倍数である必要がある.
    そこで,b=np(nは整数)とおく.
    すると,pa^3=n^3p^3\Leftrightarrow a^3=n^3p^2となる.
    よって,a^3pの倍数となるが,上記と同様に考えるとapの倍数となる.
    よって,abpの倍数となるが,これは,a,bが互いに素な整数であることに反する.
    この矛盾は,\sqrt[3]{p}を有理数だとした当初の仮定に起因する.よって,\sqrt[3]{p}は無理数である.
    証明終了.

    (2)
    a\left(\sqrt[3]{p}\right)^2+b\sqrt[3]{p}+c=0の両辺に\sqrt[3]{p}を掛けることで,
    a\left(\sqrt[3]{p}\right)^2+b\sqrt[3]{p}+c=0\Rightarrow ap+b\left(\sqrt[3]{p}\right)^2+c\sqrt[3]{p}=0
    証明終了.

    (3)
    前問の結果より,
    ap+b\left(\sqrt[3]{p}\right)^2+c\sqrt[3]{p}=0\Leftrightarrow\left(\sqrt[3]{p}\right)^2=-\frac{ap+c\sqrt[3]{p}}{b}が成り立つ.
    これをa\left(\sqrt[3]{p}\right)^2+b\sqrt[3]{p}+c=0に代入すると,
    a\left(-\frac{ap+c\sqrt[3]{p}}{b}\right)+b\sqrt[3]{p}+c=0\Leftrightarrow bc-a^2p+\left(b^2-ac\right)\sqrt[3]{p}=0
    証明終了.

    (4)
    前問の結果より,
    bc-a^2p+\left(b^2-ac\right)\sqrt[3]{p}=0
    が成り立つ.
    (1)より,\sqrt[3]{p}は無理数のため,上式が成り立つためには,
    \begin{cases} bc-a^2p=0 \\ b^2-ac=0 \end{cases}
    が成り立てば必要十分.
    仮にa\neq0だとすると,
    b^2-ac=0\Leftrightarrow c=\frac{b^2}{a}であり,故にbc-a^2p=b\cdot\frac{b^2}{a}-a^2p=0\Leftrightarrow b^3=a^3p
    \therefore b=a\sqrt[3]{p}となるが,\sqrt[3]{p}が無理数でa,bは整数であるから矛盾.よって,a=0
    \therefore b^2-ac=0\Leftrightarrow b=0
    \therefore a\left(\sqrt[3]{p}\right)^2+b\sqrt[3]{p}+c=0\Leftrightarrow c=0
    以上より,a=b=c=0
    証明終了.

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。

2018年早稲田大学理工|過去問徹底研究 大問2

2019.09.02

早稲田大学理工過去問徹底研究 2018年 大問2 方針の立て方 (1) 領域の図示も求積も頻出問題のため特筆事項なし.図示する場合には共有点はきちんと出しておくようにしよう. (2) 領域はの範囲に限られるため,は高々9通りを考えれば良い.そのためトリッキーな解法を考えるよりも,虱潰しに数え上げた方

  • …続きを読む
  • 早稲田大学理工過去問徹底研究 2018年 大問2

    方針の立て方

    (1)
    領域の図示も求積も頻出問題のため特筆事項なし.図示する場合には共有点はきちんと出しておくようにしよう.

    (2)
    領域は-3\leqq x\leqq5の範囲に限られるため,xは高々9通りを考えれば良い.そのためトリッキーな解法を考えるよりも,虱潰しに数え上げた方が速いと判断し,地道に数え上げる.

    解答例

    (1)
    \begin{cases} y=x+1 \\ y=-3x+5 \\ y=-\frac{1}{4}x^2-\frac{1}{2}x-\frac{5}{4}=-\frac{1}{4}\left(x+1\right)^2-1 \end{cases}
    これを図示すると,

    (なお,\left(-3,-2\right)\left(5,-10\right)で,放物線は直線と接する.)
    よって,求める面積は,
    \int_{-3}^{1}\left\{\left(x+1\right)-\left(-\frac{1}{4}x^2-\frac{1}{2}x-\frac{5}{4}\right)\right\}dx+\int_{1}^{5}\left\{\left(-3x+5\right)-\left(-\frac{1}{4}x^2-\frac{1}{2}x-\frac{5}{4}\right)\right\}dx\bigm=\left[\frac{1}{12}x^3+\frac{3}{4}x^2+\frac{9}{4}x\right]_{-3}^1+\left[\frac{1}{12}x^3-\frac{5}{4}x^2+\frac{25}{4}x\right]_1^5=\frac{32}{3}……(答)

    (2)
    x=-3からx=5まで,xを一つずつ動かしながら考える.
    x=-3……0個
    x=-2……0個
    x=-1……0個
    x=0……2個
    x=1……3個
    x=2……2個
    x=3……0個
    x=4……0個
    x=5……0個
    よって,求める個数は2+3+2=7個……(答)

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。

2016年慶應大学理工|過去問徹底研究 大問4

2019.08.31

慶應義塾大学過去問徹底研究 2016年 大問4 方針の立て方 (1) 実際にに小さい順から値を代入して確かめてみることで,方針どころか答えが得られる. (2) この問題の困難の一つは未知数が多いことである().まずはこの未知数を減らしたい.事実Fを用いればを消去できると考え,早速事実Fを用いる.この

  • …続きを読む
  • 慶應義塾大学過去問徹底研究 2016年 大問4

    方針の立て方

    (1)
    実際にkに小さい順から値を代入して確かめてみることで,方針どころか答えが得られる.

    (2)
    この問題の困難の一つは未知数が多いことである(a,b,k).まずはこの未知数を減らしたい.事実Fを用いればaを消去できると考え,早速事実Fを用いる.この問題では,整数kが任意であることに注意したい.また,複素数の累乗を見たらド・モアブルの定理を疑うことは基本解法としておさえておきたい.その後,mを動かすことで答えが分かる.

    (3)
    複素数の累乗を見たらド・モアブルの定理を疑うという基本解法,三角関数は2\pi周期の関数であることから方針を得る.その後は,分数の厄介さを解消するために分母を払うこと,更に,a,bが互いに素であることから,1次不定方程式に持ち込むことを考えたい.

    (4)
    (2)と問題設定が似ているため,(2)の結果を用いたい.その後は素直に集合Q_1の要素と集合Q_2の要素を掛け合わせたものを考えていけばよい.2\left(\frac{k_1b_2+k_2b_1}{b_1b_2}\right)\piの範囲を考えれば,重複を考える必要があると分かる.b_1b_2が互いに素でないときは,\begin{cases}b_1=db_1^\prime\\b_2=db_2^\prime\end{cases} (b1',b2'は互いに素な整数)と書けることは頻出の解法のためおさえておきたい.

    解答例

    (1)
    ツ:3
    (2)
    テ:b
    (3)以下、解答
    2akbπ=2πb+2nπ (nは整数)となるkが存在すれば必要十分.
    \frac{2ak}{b}\pi=\frac{2\pi}{b}+2n\pi\Leftrightarrow ak=1+nb\Leftrightarrow ak-nb=1
    abは互いに素であるから,この1次不定方程式を満たす整数の組\left(k,n\right)は存在する.
    証明終了.
    (4)
    ト:b_1b_2
    ナ:\frac{b_1b_2}{d}

    解説
    (1)
    k=1,2は,自明に不可.
    k=3のとき,
    \left(\cos{\frac{4}{5}\pi}+i\sin{\frac{4}{5}\pi}\right)^k=\cos{\frac{12}{5}\pi}+i\sin{\frac{12}{5}\pi} (ド・モアブルの定理) =\cos{\frac{2}{5}\pi}+i\sin{\frac{2}{5}\pi}
    よって,求めるkは3……(答)

    (2)
    事実Fから,
    P={z|zは整数mを用いて\left(\cos{\frac{2}{b}\pi}+i\sin{\frac{2}{b}\pi}\right)^mと表される複素数
    となる.
    z=\left(\cos{\frac{2}{b}\pi}+i\sin{\frac{2}{b}\pi}\right)^m=\cos{\frac{2m}{b}\pi}+i\sin{\frac{2m}{b}\pi}は,m=1,2,\cdots\cdots,bのそれぞれの値に対して,異なる複素数となるが,それ以外の整数については,m=1,2,\cdots\cdots,bのどれかの整数を代入した複素数と同じ複素数となる.
    \therefore n\left(P\right)=b……(答)

    (4)
    (2)と同様に考えると,
    Q_1={z|zは整数k_1を用いて\left(\cos{\frac{2}{b_1}\pi}+i\sin{\frac{2}{b_1}\pi}\right)^{k_1}と表される複素数}
    Q_2={z|zは整数k_1を用いて\left(\cos{\frac{2}{b_2}\pi}+i\sin{\frac{2}{b_2}\pi}\right)^{k_2}と表される複素数}
    であり,
    n\left(Q_1\right)=b_1
    n\left(Q_2\right)=b_2
    である.
    b_1b_2が互いに素であるとき
    \left(\cos{\frac{2k_1}{b_1}\pi}+i\sin{\frac{2k_1}{b_1}\pi}\right)\cdot\left(\cos{\frac{2k_2}{b_2}\pi}+i\sin{\frac{2k_2}{b_2}\pi}\right)=\cos{2\left(\frac{k_1b_2+k_2b_1}{b_1b_2}\right)\pi}+i\sin{2\left(\frac{k_1b_2+k_2b_1}{b_1b_2}\right)\pi}
    ここで,k_1=1,2,\cdots\cdots,b_1k_2=1,2,\cdots\cdots,b_2の範囲で考えると(この範囲のみで考えても,Q_1Q_2の全ての要素を考えつくしたことになる),0<k_1\leqq b_10<k_2\leqq b_2より,
    0<2\left(\frac{k_1b_2+k_2b_1}{b_1b_2}\right)\pi4pi
    となる.よって,Q_1Q_2の異なる要素の組を掛け合わせたとしても,その積に重複が生じる可能性があると考えられるが,以下では,その重複が存在しないことを示す.
    そのために,
    \frac{k_1b_2+k_2b_1}{b_1b_2}=\frac{k_1^\prime b_2+k_2^\prime b_1}{b_1b_2}+n (n=0,1) \Leftrightarrow \frac{k_1-k_1^\prime}{b_1}+\frac{k_2-k_2^\prime}{b_2}=n
    となる整数の組\left(k_1^\prime,k_2^\prime\right)を考える.
    上の方程式を満たす\left(k_1^\prime,k_2^\prime\right)の組が,\left(k_1,k_2\right)のみであることを示せれば,必要十分である.
    まず,n=0となるには,
    \begin{cases}k_1-k_1^\prime=0\\k_2-k_2^\prime=0\end{cases}\Leftrightarrow\left(k_1,k_2\right)=\left(k_1^\prime,k_2^\prime\right)
    が必要.
    次に,n=1となるには,
    \frac{k_1-k_1^\prime}{b_1}+\frac{k_2-k_2^\prime}{b_2}=1\Leftrightarrow\left(k_1-k_1^\prime\right)b_2+\left(k_2-k_2^\prime\right)b_1=b_1b_2\bigm\Leftrightarrow\left(k_1-k_1^\prime\right)b_2=\left(b_2-k_2+k_2^\prime\right)b_1\bigm\Leftrightarrow\frac{b_1}{b_2}=\frac{k_1-k_1^\prime}{b_2-\left(k_2-k_2^\prime\right)}
    であること(b_1b_2は互いに素であるから,左辺は既約分数)と,1\leqq b_2-\left(k_2-k_2^\prime\right)\leqq2b_2-1<2b_2より,
    \begin{cases}k_1-k_1^\prime=b_1\\b_2-(k_2-k_2^\prime)=b_2\end{cases}
    が必要だが,k_1-k_1^\prime=b_1は不可.
    よって,方程式を満たす\left(k_1^\prime,k_2^\prime\right)の組は存在しない.
    以上より,方程式を満たす\left(k_1^\prime,k_2^\prime\right)の組は\left(k_1,k_2\right)のみである.
    つまり,Q_1Q_2の異なる要素の組を掛け合わせたとき,その積に重複が生じる可能性はないことが示せた.
    よって,
    n\left(R\right)=b_1b_2……(答)
    b_1b_2が互いに素でないとき
    \begin{cases}b_1=db_1^\prime\\b_2=db_2^\prime\end{cases} (b_1^\prime,b_2^\primeは互いに素な整数)
    と書ける.
    \therefore\left(\cos{\frac{2k_1}{b_1}\pi}+i\sin{\frac{2k_1}{b_1}\pi}\right)\cdot\left(\cos{\frac{2k_2}{b_2}\pi}+i\sin{\frac{2k_2}{b_2}\pi}\right)=\cos{2\left(\frac{k_1b_2^\prime+k_2b_1^\prime}{db_1^\prime b_2^\prime}\right)\pi}+i\sin{2\left(\frac{k_1b_2^\prime+k_2b_1^\prime}{db_1^\prime b_2^\prime}\right)\pi}
    上記の議論と比べれば,
    n\left(R\right)=b_1^\prime b_2^\prime=\frac{b_1b_2}{d}……(答)

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。

2016年慶應大学理工|過去問徹底研究 大問5

2019.08.31

慶應義塾大学過去問徹底研究 2016年  大問5 方針の立て方 (ニ)と(ヌ)については,基本的な解法であるため特筆事項なし. (ネ)について. 面と垂線の問題である.面は2つの線形独立なベクトル(このようなベクトルを基底ベクトルという)の線形結合で表現される.つまり,「面と垂直」という条件を,「2

  • …続きを読む
  • 慶應義塾大学過去問徹底研究 2016年  大問5

    方針の立て方

    (ニ)と(ヌ)については,基本的な解法であるため特筆事項なし.
    (ネ)について.
    面と垂線の問題である.面は2つの線形独立なベクトル(このようなベクトルを基底ベクトルという)の線形結合で表現される.つまり,「面と垂直」という条件を,「2つの基底ベクトルと垂直」という条件に言い換えることができる.このことを利用しよう.なお,面と垂線の問題は難関大学では頻出の問題であるため,この問題ができなかった受験生は是非復習してほしい.
    (ノ)について.
    前問で\triangle\mathrm{ABC}の垂線を考えたので,\triangle\mathrm{ABC}を底面と考えて体積を求めるという方針が立つ.そのためには高さに当たる線分\mathrm{OH}の長さを求める必要があるため,線分\mathrm{OH}のことを考える.
    (ハ)について.
    実際に点\mathrm{P}と点\mathrm{Q}を作図する.\triangle\mathrm{ABC}は全ての辺の長さが分かっているため,垂線\mathrm{BB^\prime}の長さが求められることを考えれば,相似比を使うという考え方も思い浮かぶ.
    (ヒ)について.
    \triangle\mathrm{OAC}\equiv\triangle\mathrm{BCA}であることから,四面体のねじれ具合を考え,切り口の形を考える.線分\mathrm{PQ}の長さを前問で求めたので,線分\mathrm{PQ}を底辺として考えるという方針を立てると,点\mathrm{R}について考えるという方針も立つ.

    解答例
    ニ:\frac{3}{2}
    ヌ:\frac{3\sqrt{15}}{4}
    ネ:\frac{7}{9}\vec{\mathrm{AB}}+\frac{1}{3}\vec{\mathrm{AC}}
    ノ:\frac{5\sqrt2}{4}
    ハ:\frac{21\sqrt{15}}{40}
    ヒ:\frac{45\sqrt2}{32}

    解説

    \vec{\mathrm{AB}}\cdot\vec{\mathrm{AC}}と,\triangle\mathrm{ABC}の面積について(ニ,ヌについて)
    \triangle\mathrm{ABC}に対して余弦定理より,
    \left(\sqrt{10}\right)^2=3^2+2^2-2\vec{\mathrm{AB}}\cdot\vec{\mathrm{AC}}\Leftrightarrow\vec{\mathrm{AB}}\cdot\vec{\mathrm{AC}}=32……(答)
    \therefore\triangle\mathrm{ABC}=\frac{1}{2}\sqrt{\left|\vec{\mathrm{AB}}\right|^2\left|\vec{\mathrm{AC}}\right|^2-\left(\vec{\mathrm{AB}}\cdot\vec{\mathrm{AC}}\right)^2}=\frac{3\sqrt{15}}{4}……(答)

    \vec{\mathrm{AH}}について(ネについて)
    \vec{\mathrm{AH}}=x\vec{\mathrm{AB}}+y\vec{\mathrm{AC}} (x,yは実数定数)とおく.すると,\vec{\mathrm{OH}}=x\vec{\mathrm{AB}}+y\vec{\mathrm{AC}}-\vec{\mathrm{AO}}
    平面\alpha\mathrm{OH}は直交するので,下記の条件
    \begin{cases}\vec{\mathrm{OH}}\cdot\vec{\mathrm{AB}}=0\\\vec{\mathrm{OH}}\cdot\vec{\mathrm{AC}}=0\end{cases}
    を満たす.
    ここで.\triangle\mathrm{OAB}\triangle\mathrm{OAC}それぞれに余弦定理を用いることで,
    \begin{cases}\vec{\mathrm{AO}}\cdot\vec{\mathrm{AB}}&=\frac{15}{2}\\\vec{\mathrm{AO}}\cdot\vec{\mathrm{AC}}&=\frac{5}{2}\end{cases}
    を得る.これを用いて,上の条件式を計算すると,
    \begin{cases}x=\frac{7}{9}\\y=\frac{1}{3}\end{cases}
    を得る.
    \therefore\vec{\mathrm{AH}}=\frac{7}{9}\vec{\mathrm{AB}}+\frac{1}{3}\vec{\mathrm{AC}}……(答)

    〇四面体\mathrm{OABC}の体積について(ノについて)
    \left|\vec{\mathrm{AH}}\right|^2=\left(\frac{7}{9}\vec{\mathrm{AB}}+\frac{1}{3}\vec{\mathrm{AC}}\right)\cdot\left(\frac{7}{9}\vec{\mathrm{AB}}+\frac{1}{3}\vec{\mathrm{AC}}\right)=\frac{49}{81}\left|\vec{\mathrm{AB}}\right|^2+\frac{1}{9}\left|\vec{\mathrm{AC}}\right|^2+\frac{14}{27}\vec{\mathrm{AB}}\cdot\vec{\mathrm{AC}}=\frac{20}{3}
    \therefore\left|\vec{\mathrm{OH}}\right|^2=\left|\vec{\mathrm{OA}}\right|^2-\left|\vec{\mathrm{AH}}\right|^2=\frac{10}{3}\Leftrightarrow\left|\vec{\mathrm{OH}}\right|=\frac{\sqrt{30}}{3}
    よって,四面体\mathrm{OABC}の体積は,
    \frac{1}{3}\cdot\triangle\mathrm{ABC}\cdot\vec{\mathrm{OH}}=13\cdot\frac{3\sqrt{15}}{4}\cdot\frac{\sqrt{30}}{3}=\frac{5\sqrt2}{4}……(答)

    \mathrm{PQ}の長さについて(ハについて)
    \mathrm{P}は,線分\mathrm{AH}上の点のため,
    \vec{\mathrm{AP}}=k\vec{\mathrm{AH}}=\frac{7}{9}k\vec{\mathrm{AB}}+\frac{1}{3}k\vec{\mathrm{AC}}
    と書ける.
    ここで,点\mathrm{P}\triangle\mathrm{ABC}において,辺\mathrm{BC}上の交点であるから,
    \frac{7}{9}k+\frac{1}{3}k=1\Leftrightarrow k=\frac{9}{10}
    \therefore\vec{\mathrm{AP}}=\frac{7}{10}\vec{\mathrm{AB}}+\frac{3}{10}\vec{\mathrm{AC}}
    よって,点\mathrm{P}は,線分\mathrm{BC}を3:7に内分する点.

    上図のように,\triangle\mathrm{ABC}で,\mathrm{B}から\mathrm{AC}への垂線の足を\mathrm{B}^\primeとする.
    \mathrm{A}\mathrm{B}^\prime=x>0とおくと,三平方の定理より,
    {\mathrm{AB}}^2-x^2={\mathrm{BC}}^2-\left(\mathrm{AC}-x\right)^2\Leftrightarrow x=\frac{3}{4}
    \thereforeB\mathrm{B}^\prime=\frac{3\sqrt{15}}{4}
    \triangleC\mathrm{B}^\prime\mathrm{B}∽\triangleCQP(相似比10:7)より,
    \mathrm{PQ}=\frac{7}{10}\cdot\frac{3\sqrt{15}}{4}=\frac{21\sqrt{15}}{40}……(答)

    〇切り口の面積について(ヒについて)
    4つの面が全て合同であることから,2点\mathrm{P,Q}を通り平面\alphaに垂直な平面は,辺\mathrm{OA},辺\mathrm{OB}と交わる.
    特に,線分\mathrm{PQ}を平面\alphaと垂直な方向に動かすと,\triangle\mathrm{OAC}上を通ると考えられる.
    ここで,\mathrm{P}から,\triangle\mathrm{OAC}への垂線の足を\mathrm{R}とする.
    \vec{\mathrm{AR}}=s\vec{\mathrm{AO}}+t\vec{\mathrm{AC}}\Leftrightarrow\vec{\mathrm{PR}}=s\vec{\mathrm{AO}}-\frac{7}{10}\vec{\mathrm{AB}}+\left(t-\frac{3}{10}\right)\vec{\mathrm{AC}} (s,tは実数定数)とおく.

    \mathrm{PR}\triangle\mathrm{ABC}は直交するので,
    \begin{cases}\vec{\mathrm{PR}}\cdot\vec{\mathrm{AB}}=0\\\vec{\mathrm{PR}}\cdot\vec{\mathrm{AC}}=0\end{cases}
    これを解くと、
    \begin{cases}x=\frac{9}{10}\\y=0\end{cases}
    よって,点\mathrm{R}は辺\mathrm{AO}上の点であり,
    \vec{\mathrm{AR}}=\frac{9}{10}\vec{\mathrm{AO}}
    となる.
    \therefore\vec{\mathrm{PR}}=\frac{9}{10}\vec{\mathrm{AO}}-\frac{7}{10}\vec{\mathrm{AB}}-\frac{3}{10}\vec{\mathrm{AC}}
    \therefore\left|\vec{\mathrm{PR}}\right|=\frac{3\sqrt{30}}{10}

    また,上図のように,2点\mathrm{P,Q}を通り平面\alphaに垂直な平面と辺\mathrm{OB}の交点を\mathrm{S}とし,\mathrm{S}から平面\alphaへの垂線の足を\mathrm{T}とする.
    \triangle\mathrm{BOH}\backsim\triangle\mathrm{BST}より,\mathrm{T}\mathrm{BH}上の点であり,かつ,\mathrm{PQ}上の点であるから,実数定数i,jを用いて,
    \bagin{cases}\vec{\mathrm{BT}}=i\vec{\mathrm{BH}}\\\vec{\mathrm{QT}}=j\vec{\mathrm{QP}}\end{cases}\Leftrightarrow\bagin{cases}\vec{\mathrm{QT}}&=\left(1-\frac{2}{9}x\right)\vec{\mathrm{AB}}+\left(\frac{1}{3}x-\frac{9}{16}\right)\vec{\mathrm{AC}}\\\vec{\mathrm{QT}}&=\frac{7}{10}j\vec{\mathrm{AB}}-\frac{21}{80}j\vec{AC}\end{cases}
    係数比較して解くことで,
    j=\frac{25}{21}
    を得る.
    \therefore\left|\vec{\mathrm{QT}}\right|=\frac{25}{21}\left|\vec{\mathrm{PQ}}\right|=\frac{5\sqrt{15}}{8}
    等積変形の考え方を用いれば,求める面積は\triangle\mathrm{RTQ}の面積と同じであるから,
    \frac{1}{2}\cdot\mathrm{QT}\cdot\mathrm{PR}=\frac{1}{2}\cdot\frac{5\sqrt{15}}{8}\cdot\frac{3\sqrt{30}}{10}=\frac{45\sqrt2}{32}……(答)

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。

2018年慶應大学理工|過去問徹底研究 大問2

2019.08.30

慶應義塾大学過去問徹底研究 2018年 大問2 方針の立て方 (1)高々2回の移動のため,書き出して考えれば解答を得られる. (2)この問題も高々3回の移動のため,書き出せば解答を得られるが,正攻法で攻めるより余事象で考えた方が条件が厳しくなることを利用することで,手間を省ける. (3)左への移動は

  • …続きを読む
  • 慶應義塾大学過去問徹底研究 2018年 大問2

    方針の立て方

    (1)高々2回の移動のため,書き出して考えれば解答を得られる.

    (2)この問題も高々3回の移動のため,書き出せば解答を得られるが,正攻法で攻めるより余事象で考えた方が条件が厳しくなることを利用することで,手間を省ける.

    (3)左への移動はできないことから,右への移動回数=x座標となることを利用する.実際に満たすものを考えることで,この事実には気付ける.後は場合分けして虱潰しにすればよい.

    (4)「…」を使って満たす場合を書いてみることで,解法を得る.

    (5)正攻法で解くよりも,余事象で考えた方が条件が厳しくなることから余事象で攻めることを見抜く.(3)と同様に右への移動回数=x座標となることを利用して虱潰しに考えつくす.

    解答例
    (1)
    オ:\frac{1}{3}
    (2)
    カ:\frac{23}{27}
    (3)
    キ:\frac{11}{27}
    ク:\frac{13}{33}
    (4)
    ケ:\frac{n-1}{4}\left(\frac{2}{3}\right)^n
    (5)
    コ:\frac{2}{3}-\frac{n+1}{2}\left(\frac{2}{3}\right)^n

    解説
    x軸正方向に1動くことを右に動く,同様にy軸正(負)方向に1動くことを上(下)に動くということにする.
    (1)
    上→下,下→上,右→右に動く場合のみ.
    \therefore\left(\frac{2}{6}\cdot\frac{2}{6}\right)+\left(\frac{2}{6}\cdot\frac{2}{6}\right)+\left(\frac{2}{6}\cdot\frac{2}{6}\right)=\frac{1}{3}……(答)

    (2)
    余事象で考える.
    さいころを3回投げて,点Pのx座標とy座標がともに1未満となるのは,上0回,下3回か,上1回,下2回のどちらかの出し方をしたとき.
    ・上0回,下3回の確率
    \left(\frac{2}{6}\right)^3=\frac{1}{27}
    ・上1回,下2回の確率
    何回目に上に動くかで3通りあるため,
    3\cdot\frac{2}{6}\cdot\left(\frac{2}{6}\right)^2=\frac{1}{9}
    よって,さいころを3回投げて,点Pのx座標とy座標がともに1未満となる確率は,
    \frac{1}{27}+\frac{1}{9}=\frac{4}{27}
    これより,求める確率は,
    1-\frac{4}{27}=\frac{23}{27}……(答)

    (3)
    〇さいころを4回投げたとき,点Pのx座標が2以上である確率(キについて)
    4回の移動の内,右に何回動くかで場合分けする.
    (ⅰ)右に2回動くときの確率
    4回の移動の内,何回目で右に動くかで,{_4^}\mathrm{C}_2通り.
    \therefore{_4^}\mathrm{C}_2\cdot\left(\frac{2}{6}\right)^2\left(\frac{4}{6}\right)^2=\frac{8}{27}
    (ⅱ)右に3回動くときの確率
    4回の移動の内,何回目で右に動くかで,4通り.
    \therefore4\cdot\left(\frac{2}{6}\right)^3\cdot\frac{4}{6}=\frac{8}{81}
    (ⅲ)右に4回動くときの確率
    \left(\frac{2}{6}\right)^4=\frac{1}{81}
    以上,(ⅰ)~(ⅲ)より,
    \frac{8}{27}+\frac{8}{81}+\frac{1}{81}=\frac{11}{27}……(答)
    〇条件付き確率(クについて)
    さいころを4回投げたとき,点Pのx座標が2以上であり,かつ点Pのy座標が0である確率を求める.
    さいころを4回投げたとき,点Pのx座標が2以上であり,かつ点Pのy座標が0となるのは,
    (Ⅰ)前問の(ⅰ)で右以外の移動が「上下」か「下上」である場合
    (Ⅱ)前問の(ⅲ)の場合
    の2通り.
    (Ⅰ)の場合
    上への移動が先か,下への移動が先かで2通り.4回の移動の内,何回目で右に動くかで,{_4^}\mathrm{C}_2通り.
    \therefore2\cdot{_4^}\mathrm{C}_2\cdot\left(\frac{2}{6}\right)^2\cdot\frac{2}{6}\cdot\frac{2}{6}=\frac{4}{27}
    (Ⅱ)の場合の確率は,前問の(ⅲ)と同じで,\frac{1}{81}
    以上,(Ⅰ)と(Ⅱ)より,さいころを4回投げたとき,点Pのx座標が2以上であり,かつ点Pのy座標が0である確率は,
    \frac{4}{27}+\frac{1}{81}=\frac{13}{81}
    よって,求める条件付き確率は,
    \frac{\frac{13}{81}}{\frac{11}{27}}=\frac{13}{33}……(答)

    (4)
    1回目~n-1回目の移動で,右への移動が1回,右以外への移動がn-2回であり,かつ,n回目の移動が右であれば必要十分.
    1回目~n-1回目の内,何回目で右に動くかで,n-1通り.
    \therefore\left(n-1\right)\cdot\frac{2}{6}\cdot\left(\frac{4}{6}\right)^{n-2}\cdot\frac{2}{6}=\frac{n-1}{4}\left(\frac{2}{3}\right)^n……(答)

    (5)
    余事象で考える.
    (A)x=2上の格子点を1回も通らない確率
    (A-a)n回の移動の内訳が,右への移動が1回,右以外への移動がn-1回である確率
    n回の移動の内,何回目で右に移動するかでn通り.
    \therefore n\cdot\frac{2}{6}\cdot\left(\frac{4}{6}\right)^{n-1}=\frac{n}{2}\left(\frac{2}{3}\right)^n
    (A-b)n回の移動の内訳が,右への移動が0回,右以外への移動がn回である確率
    \left(\frac{4}{6}\right)^n=\left(\frac{2}{3}\right)^n
    以上,(A-a)と(A-b)より,x=2上の格子点を1回も通らない確率は,
    \frac{n}{2}\left(\frac{2}{3}\right)^n+\left(\frac{2}{3}\right)^n=\frac{n+2}{2}\left(\frac{2}{3}\right)^n
    (B)x=2上の格子点を1回だけ通る確率
    (B-a)n回目で初めてx=2上の格子点に乗る確率
    前問の結果より,
    \frac{n-1}{4}\left(\frac{2}{3}\right)^n
    (B-b)k回目(2\leqq k\leqq n-1)で初めてx=2上の格子点に乗り,その直後に右に動いて,x=2上の格子点から外れる確率
    k回目(2\leqq k\leqq n-1)で初めてx=2上の格子点に乗る確率が,\frac{k-1}{4}\left(\frac{2}{3}\right)^kであり,k+1回目に右に動く
    確率は\frac{2}{6}=\frac{1}{3}k+2回目以降の挙動についての制約はない.
    \therefore\frac{k-1}{4}\left(\frac{2}{3}\right)^k\cdot\frac{1}{3}=\frac{k-1}{12}\left(\frac{2}{3}\right)^k
    ここで,2\leqq k\leqq n-1の範囲で総和を取ると,x=2上の格子点を1回だけ通る確率の内,(B-a)を除いた確率が得られる.
    \sum_{k=2}^{n-1}{\frac{k-1}{12}\left(\frac{2}{3}\right)^k}=\frac{1}{12}\sum_{k=2}^{n-1}{k\left(\frac{2}{3}\right)^k}-\frac{1}{12}\sum_{k=2}^{n-1}\left(\frac{2}{3}\right)^k=\frac{1}{12}\sum_{k=2}^{n-1}{k\left(\frac{2}{3}\right)^k}-\frac{1}{12}\cdot\frac{\left(\frac{2}{3}\right)^2\left\{1-\left(\frac{2}{3}\right)^{n-2}\right\}}{1-\frac{2}{3}}=\frac{1}{12}\sum_{k=2}^{n-1}{k\left(\frac{2}{3}\right)^k}-\frac{1}{9}+\frac{1}{4}\left(\frac{2}{3}\right)^n
    ここで,S=\sum_{k=2}^{n-1}{k\left(\frac{2}{3}\right)^k}とおくと,
    S=2\cdot\left(\frac{2}{3}\right)^2+3\cdot\left(\frac{2}{3}\right)^3+4\cdot\left(\frac{2}{3}\right)^4+\cdots\cdots+\left(n-1\right)\left(\frac{2}{3}\right)^{n-1}
    \frac{2}{3}S=2\cdot\left(\frac{2}{3}\right)^3+3\cdot\left(\frac{2}{3}\right)^4+\cdots\cdots+\left(n-2\right)\left(\frac{2}{3}\right)^{n-1}+\left(n-1\right)\left(\frac{2}{3}\right)^n
    両辺を引き算すると,
    \frac{1}{3}S=2\cdot\left(\frac{2}{3}\right)^2+\left\{\left(\frac{2}{3}\right)^3+\left(\frac{2}{3}\right)^4+\cdots\cdots+\left(\frac{2}{3}\right)^{n-1}\right\}-\left(n-1\right)\left(\frac{2}{3}\right)^n=\frac{8}{9}+\frac{\left(\frac{2}{3}\right)^3\left\{1-\left(\frac{2}{3}\right)^{n-3}\right\}}{1-\frac{2}{3}}-\left(n-1\right)\left(\frac{2}{3}\right)^n=\frac{16}{9}-\left(n+2\right)\left(\frac{2}{3}\right)^n
    \therefore S=\frac{16}{3}-3\left(n+2\right)\left(\frac{2}{3}\right)^n
    よって,
    \sum_{k=2}^{n-1}{\frac{k-1}{12}\left(\frac{2}{3}\right)^k}=\frac{1}{12}\left\{\frac{16}{3}-3\left(n+2\right)\left(\frac{2}{3}\right)^n\right\}-\frac{1}{9}+\frac{1}{4}\left(\frac{2}{3}\right)^n=\frac{1}{3}-\frac{n+1}{4}\left(\frac{2}{3}\right)^n
    以上,(B-a)と(B-b)より,x=2上の格子点を1回だけ通る確率は,
    \frac{n-1}{4}\left(\frac{2}{3}\right)^n+\frac{1}{3}-\frac{n+1}{4}\left(\frac{2}{3}\right)^n=\frac{1}{3}-\frac{1}{2}\left(\frac{2}{3}\right)^n
    以上,(A)と(B)より,余事象の確率は,
    \frac{n+2}{2}\left(\frac{2}{3}\right)^n+\frac{1}{3}-\frac{1}{2}\left(\frac{2}{3}\right)^n=\frac{1}{3}+\frac{n+1}{2}\left(\frac{2}{3}\right)^n
    よって,求める確率は,
    1-\left\{\frac{1}{3}+\frac{n+1}{2}\left(\frac{2}{3}\right)^n\right\}=\frac{2}{3}-\frac{n+1}{2}\left(\frac{2}{3}\right)^n……(答)

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。

2017年慶應大学理工|過去問徹底研究 大問5

2019.08.30

2017年慶應大学理工|過去問徹底研究 大問5 方針の立て方 (1) (フ)については,「方程式の解」⇔「関数と軸との交点(の座標)」の同値変形を利用する.典型的な解法であるため,これ以上の特筆事項なし. (ヘ)については,増減表が描けていれば素直に計算するのみ. (2) (ホ)も問題文に素直に従い

  • …続きを読む
  • 2017年慶應大学理工|過去問徹底研究 大問5

    方針の立て方

    (1)
    (フ)については,「方程式f\left(x\right)=0の解」⇔「関数y=f\left(x\right)x軸との交点(のx座標)」の同値変形を利用する.典型的な解法であるため,これ以上の特筆事項なし.
    (ヘ)については,増減表が描けていれば素直に計算するのみ.

    (2)
    (ホ)も問題文に素直に従い,法線を出し,それとCとの交点を計算すれば求まる.
    (マ)については,最小値問題で最初に疑う相加・相乗平均の関係式で解ける問題であり,特筆事項なし.

    (ミ)について.「接線」が「法線」となっただけで,三次関数の接線の本数問題と同様の解き方をすればよいと考える.(1)の問題の結果を利用していないことを気に留めておくと途中の計算を殆どせずに答えにたどり着く.

    解答例
    (1)
    フ:\frac{4}{3}\alpha\sqrt\alpha
    ヘ:\frac{3}{2}\alpha^2
    (2)
    ホ:\frac{18a^2+1}{18a}
    マ:\frac{\sqrt2}{3}
    ミ:\left(\frac{3}{4}x\right)^\frac{2}{3}+\frac{1}{6}

    解説

    (1)
    \betaの条件(フについて)
    g\left(x\right)=18x^3-6\alpha x+\betaとおくと,
    g^\prime\left(x\right)=54x^2-6\alpha
    \therefore g^\prime\left(x\right)=0\Leftrightarrow x=\pm\frac{\sqrt\alpha}{3}
    増減表をかくと,

    x \cdots -\frac{\sqrt\alpha}{3} \cdots \frac{\sqrt\alpha}{3} \cdots
    g^\prime\left(x\right) \mathrm{+} 0 - 0 \mathrm{+}
    g\left(x\right) \nearrow \frac{4}{3}\alpha\sqrt\alpha+\beta \searrow -\frac{4}{3}\alpha\sqrt\alpha+\beta \nearrow

    よって,3次方程式g\left(x\right)=0が,ただ1つの実数解を持つ条件は,
    \frac{4}{3}\alpha\sqrt\alpha+\beta0
    この内,\frac{4}{3}\alpha\sqrt\alpha+\beta0\beta>0より,常に成立しない.
    \therefore-\frac{4}{3}\alpha\sqrt\alpha+\beta>0\Leftrightarrow\beta>\frac{4}{3}\alpha\sqrt\alpha……(答)
    〇面積(ヘについて)
    \beta=\frac{4}{3}\alpha\sqrt\alphaのとき,
    y=18x^3-6\alpha x+\frac{4}{3}\alpha\sqrt\alpha=18\left(x-\frac{\sqrt\alpha}{3}\right)^2\left(x+\frac{2}{3}\sqrt\alpha\right)
    よって,グラフの概形は下図の通り.

    求める面積は,
    \int_{-\frac{2}{3}\sqrt\alpha}^{\frac{\sqrt\alpha}{3}}\left(18x^3-6\alpha x+\frac{4}{3}\alpha\sqrt\alpha\right)dx=\left[\frac{9}{2}x^4-3\alpha x^2+\frac{4}{3}\alpha\sqrt\alpha x\right]_{-\frac{2}{3}\sqrt\alpha}^{\frac{\sqrt\alpha}{3}}\bigm=\frac{3}{2}\alpha^2……(答)

    (2)
    X\left(a\right)(ホについて)
    y^\prime=6x
    これより,点Pでの接線の傾きは-6aであり,法線の傾きは,\frac{1}{6a}と分かる.よって,点Pでの法線の方程式は,
    y=\frac{1}{6a}x+\frac{1}{6}+3a^2
    これと,Cの交点のx座標は,
    3x^2=\frac{1}{6a}x+\frac{1}{6}+3a^2\Leftrightarrow\left(x+a\right)\left(18ax-18a^2-1\right)=0
    X\left(a\right)\neq-aより,
    X\left(a\right)=\frac{18a^2+1}{18a}……(答)
    X\left(a\right)の最小値(マについて)
    X\left(a\right)=a+\frac{1}{18a}
    a>0かつ\frac{1}{18a}>0より,相加・相乗平均の関係式が使えて,
    X\left(a\right)\geqq2\sqrt{a\cdot\frac{1}{18a}}=\frac{\sqrt2}{3}
    等号成立は,a>0に注意すれば,
    a=\frac{1}{18a}\Leftrightarrow a=\frac{\sqrt2}{6}
    で成立する.
    よって,求める最小値は\frac{\sqrt2}{3}……(答)
    f\left(x\right)(ミについて)
    前問の議論より,点Pでの法線の方程式は,
    y=\frac{1}{6a}x+\frac{1}{6}+3a^2
    であった.
    よって,aについての以下の方程式
    y_0=\frac{1}{6a}x_0+\frac{1}{6}+3a^2\Leftrightarrow18a^3-6\left(y_0-\frac{1}{6}\right)a+x_0=0が,ただ1つの実数解をもつ条件を考えれば必要十分.
    y_0-\frac{1}{6}>0\Leftrightarrow\frac{1}{6}<y_0のとき
    y_0-\frac{1}{6}>0\Leftrightarrow\frac{1}{6}0\beta=x_0>0とすることで,(1)の議論に帰着でき,考えるべき条件は,
    x_0>\frac{4}{3}\left(y_0-\frac{1}{6}\right)^\frac{3}{2}\Leftrightarrow y_0<\left(\frac{3}{4}x_0\right)^\frac{2}{3}+\frac{1}{6}
    と分かる.
    y_0-\frac{1}{6}\leqq0\Leftrightarrow y_0\leqq\frac{1}{6}のとき
    \alpha=y_0-\frac{1}{6}\leqq0\beta=x_0>0とすることで,(1)の議論を考え直すと,
    g^\prime\left(x\right)=54x^2-6\alpha>0
    となり,任意のy_0に対してただ1つの実数解をもつ.
    よって,求める必要十分条件は,
    y_0<\left(\frac{3}{4}x_0\right)^\frac{2}{3}+\frac{1}{6}
    である.
    \therefore f\left(x\right)=\left(\frac{3}{4}x\right)^\frac{2}{3}+\frac{1}{6}……(答)

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。

2017年慶應大学理工|過去問徹底研究 大問3

2019.08.30

2017年慶應大学理工|過去問徹底研究 大問3 方針の立て方 (1) いきなり範囲を考えると難しいため,まず範囲の制約を無視したを解く.その後で範囲を考える. (2) 実際に積分の計算を実行しなければならないが,の具体的な積分計算はできないため,何とかしての積分を解消する必要がある.そこで, で積分

  • …続きを読む
  • 2017年慶應大学理工|過去問徹底研究 大問3

    方針の立て方

    (1)
    いきなり範囲を考えると難しいため,まず範囲の制約を無視した\sin{\left(\left(2n+1\right)\pi x\right)}=0を解く.その後で範囲を考える.

    (2)
    実際に積分の計算を実行しなければならないが,f\left(x\right)の具体的な積分計算はできないため,何とかしてf\left(x\right)の積分を解消する必要がある.そこで,
    a\leqq x\leqq bで積分可能な関数f\left(x\right)g\left(x\right)に対して,a\leqq x\leqq b0\leqq g\left(x\right)が成り立つならば,
    \left\{\min_{\left[a,b\right]}{f\left(x\right)}\right\}\int_{a}^{b}g\left(x\right)dx\leqq\int_{a}^{b}f\left(x\right)g\left(x\right)dx\leqq\left\{\max_{\left[a,b\right]}{f\left(x\right)}\right\}\int_{a}^{b}g\left(x\right)dx
    が成り立つことを利用する.この不等式は重要な不等式のためおさえておくこと.

    (3)
    (F1)と(F2)が不等式であることから,はさみうちの原理を用いると考える.そのためにはまずI_na_kで表す必要がある.0=x_0\leqq\cdots\cdots\leqq x_{2n+1}=1であることから,積分区間を細かくちぎっていくという変形が思いつく.

    (4)
    \left|\sin{\left(\left(2n+1\right)\pi x\right)}\right|の絶対値記号を外すために,\sin{\left(\left(2n+1\right)\pi x\right)}の符号の変わり目で場合分け(積分区間をちぎる)をする.すると前問と同じ解法に帰着する.

    解答例
    (1)
    テ:2n+2
    ト:\frac{k}{2n+1}
    (2)
    kが偶数のとき,x_k\leqq x\leqq x_{k+1}の範囲で,\sin{\left(\left(2n+1\right)\pi x\right)}\geqq0
    \therefore\left\{\min_{\left[x_k,x_{k+1}\right]}{f\left(x\right)}\right\}\int_{x_k}^{x_{k+1}}\sin{\left(\left(2n+1\right)\pi x\right)}dx\leqq a_k\leqq\left\{\max_{\left[x_k,x_{k+1}\right]}{f\left(x\right)}\right\}\int_{x_k}^{x_{k+1}}\sin{\left(\left(2n+1\right)\pi x\right)}dx
    ここで,
    \int_{x_k}^{x_{k+1}}\sin{\left(\left(2n+1\right)\pi x\right)}dx=\left[-\frac{1}{\left(2n+1\right)\pi}\cos{\left(\left(2n+1\right)\pi x\right)}\right]_{x_k}^{x_{k+1}}\bigm=\frac{\left(-1\right)^k-\left(-1\right)^{k+1}}{\left(2n+1\right)\pi}\bigm=\frac{2}{\left(2n+1\right)\pi} (∵kは偶数)
    また,f\left(x\right)は増加関数のため,
    \min_{\left[x_k,x_{k+1}\right]}{f\left(x\right)}=f\left(x_k\right)
    \max_{\left[x_k,x_{k+1}\right]}{f\left(x\right)}=f\left(x_{k+1}\right)
    であるから,
    f\left(x_k\right)\frac{2}{\left(2n+1\right)\pi}\leqq a_k\leqq f\left(x_{k+1}\right)\frac{2}{\left(2n+1\right)\pi}
    証明終了.
    (3)
    x_0=0x_{2n+1}=1であるから,0\leqq x\leqq1\Longleftrightarrow x_0\leqq x\leqq x_{2n+1}
    \therefore I_n=\sum_{k=0}^{2n}\left\{\int_{x_k}^{x_{k+1}}{f\left(x\right)\sin{\left(\left(2n+1\right)\pi x\right)}}dx\right\}=\sum_{k=0}^{2n}a_k=\sum_{k=0}^{n}a_{2k}+\sum_{k=0}^{n-1}a_{2k+1}
    ここで,(F1)より,
    \sum_{k=0}^{n}{f\left(x_{2k}\right)\frac{2}{\left(2n+1\right)\pi}}\leqq\sum_{k=0}^{n}a_{2k}\leqq\sum_{k=0}^{n}{f\left(x_{2k+1}\right)\frac{2}{\left(2n+1\right)\pi}}
    (F2)より,
    -\sum_{k=0}^{n-1}{f\left(x_{2k+2}\right)\frac{2}{\left(2n+1\right)\pi}}\leqq\sum_{k=0}^{n-1}a_{2k+1}\leqq-\sum_{k=0}^{n-1}{f\left(x_{2k+1}\right)\frac{2}{\left(2n+1\right)\pi}}
    辺々を足して,
    \therefore\sum_{k=0}^{n}{f\left(x_{2k}\right)\frac{2}{\left(2n+1\right)\pi}}-\sum_{k=0}^{n-1}{f\left(x_{2k+2}\right)\frac{2}{\left(2n+1\right)\pi}}\leqq\sum_{k=0}^{n}a_{2k}+\sum_{k=0}^{n-1}a_{2k+1}\leqq\sum_{k=0}^{n}{f\left(x_{2k+1}\right)\frac{2}{\left(2n+1\right)\pi}}-\sum_{k=0}^{n-1}{f\left(x_{2k+1}\right)\frac{2}{\left(2n+1\right)\pi}}
    \therefore\frac{2}{\left(2n+1\right)\pi}f\left(x_0\right)\leqq I_n\leqq\frac{2}{\left(2n+1\right)\pi}f\left(x_{2n+1}\right)
    ここで,\lim_{n\rightarrow\infty}{f\left(x_{2n+1}\right)}=\lim_{n\rightarrow\infty}{f\left(1\right)}=f\left(1\right)より,
    \lim_{n\rightarrow\infty}{\frac{2}{\left(2n+1\right)\pi}f\left(x_0\right)}=\lim_{n\rightarrow\infty}{\frac{2}{\left(2n+1\right)\pi}f\left(x_{2n+1}\right)}=0
    よって,はさみうちの原理より,
    \lim_{n\rightarrow\infty}{I_n}=0
    証明終了.
    (4)
    ナ:\frac{1}{\pi}\int_{0}^{1}f\left(x\right)dx

    解説
    (1)
    \sin{\left(\left(2n+1\right)\pi x\right)}=0\Leftrightarrow\left(2n+1\right)\pi x=m\pi\Leftrightarrow x=\frac{m}{2n+1} (mは整数)
    区間\left[0,1\right]に属するならば,
    0\leqq\frac{m}{2n+1}\leqq1\Leftrightarrow0\leqq m\leqq2n+1
    \therefore m=0,1,2,\cdots\cdots,2n+1
    よって,求める個数は2n+2個……(答)
    m=0,1,2,\cdots\cdots,2n+1を順番に代入すると,
    x_0=0,x_1=\frac{1}{2n+1},x_2=\frac{2}{2n+1},\cdots\cdots,x_{2n+1}=1
    であることが分かる.
    \therefore x_k=\frac{k}{2n+1}……(答)

    (4)
    b_k=\int_{x_k}^{x_{k+1}}f\left(x\right)\left|\sin{\left(\left(2n+1\right)\pi x\right)}\right|dxと定義すれば,(F1)と同様に,
    f\left(x_k\right)\frac{2}{\left(2n+1\right)\pi}\leqq b_k\leqq f\left(x_{k+1}\right)\frac{2}{\left(2n+1\right)\pi}
    が成り立つ.
    また,
    J_n=\sum_{k=0}^{2n}b_k
    と書ける.
    以上より,
    \sum_{k=0}^{2n}{f\left(x_k\right)\frac{2}{\left(2n+1\right)\pi}}\leqq\sum_{k=0}^{2n}b_k=J_n\leqq\sum_{k=0}^{2n}{f\left(x_{k+1}\right)\frac{2}{\left(2n+1\right)\pi}}
    \therefore\lim_{n\rightarrow\infty}{\sum_{k=0}^{2n}{f\left(x_k\right)\frac{2}{\left(2n+1\right)\pi}}}\leqq\lim_{n\rightarrow\infty}{J_n}\leqq\lim_{n\rightarrow\infty}{\sum_{k=0}^{2n}{f\left(x_{k+1}\right)\frac{2}{\left(2n+1\right)\pi}}}
    が成り立つ.
    一方,区分求積法の考え方を用いれば,
    \lim_{n\rightarrow\infty}{\sum_{k=0}^{2n}{f\left(x_k\right)\frac{2}{\left(2n+1\right)\pi}}}=\frac{1}{\pi}\lim_{n\rightarrow\infty}{\left(\frac{2}{2+\frac{1}{n}}\right)\frac{1}{n}\sum_{k=0}^{2n}f\left(\frac{k}{2n+1}\right)}=\frac{1}{\pi}\int_{0}^{1}f\left(x\right)dx
    \lim_{n\rightarrow\infty}{\sum_{k=0}^{2n}{f\left(x_{k+1}\right)\frac{2}{\left(2n+1\right)\pi}}}=\frac{1}{\pi}\lim_{n\rightarrow\infty}{\left(\frac{2}{2+\frac{1}{n}}\right)\frac{1}{n}\sum_{k=0}^{2n}f\left(\frac{k+1}{2n+1}\right)}=\frac{1}{\pi}\int_{0}^{1}f\left(x\right)dx
    よって,はさみうちの原理より
    \lim_{n\rightarrow\infty}{J_n}=\frac{1}{\pi}\int_{0}^{1}f\left(x\right)dx……(答)

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。

1 ‹ Previous 6 7 8 9 10 11

  • 偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 早稲田校舎 : 〒162-0045
    東京都新宿区馬場下町9-7 ハイライフホーム早稲田駅前ビル4階
    TEL: 03-6884-7991
    営業時間: 月〜土 9:00-21:30 
  • Facebook Twitter
    Page Top

Copyright © BETELGEUSE corporation All Rights Reserved.