計算練習で高速化
概念をつかみ、公式を理解できたら高速でその概念、公式を正確にかつ高速で使えるようにしていきます。このレベルまで来て役に立つのが計算練習になります。公式を実際に使って、四則演算、座標平面上の動きを理解していきながら、計算練習を積んでいきましょう。
運用力×高速化
各分野での計算練習を積んで四則演算、座標平面上での動きの意味がわかったのであれば、実際に問題を解いていきましょう。このレベルで大事なのは、問題文の内容を読んでいる際に思考停止せず、数学的な理解ができているかどうか?ということです。
上記概念理解や計算練習ができてない段階で問題を解くことを行ってもあまり意味がありません。標準問題精講シリーズは他のシリーズは難しいですが、数学1Aに関してはレベル感も偏差値50~55程度の学生でも理解できかつ、解説もわかりやすく、どのように問題を解いたらよいのか?の着眼点も用意されています。
『マセマ合格数学シリーズ』は着眼点、式の展開が丁寧なので独学でも問題なく勧めることができるでしょう。標準問題精講の2B3は難し目なので、合格シリーズがその代用になっていきます。入試レベルの典型的な問題が多いので、全ての問題に対して解法を自身の手で実際に最後まで導けるかどうか?という点が大事になってきます。
入試準備のレベルの基礎レベルとしては、『1対1対応の数学』までできていれば、基本的な数学の入試問題は対応できます。1対1対応の数学はこれまでの教材と比べると、式の展開もわかりづらい可能性があります。また、1対1対応の数学独特の表現があったりもするので、その理解をするのが初学者にとっては難しいです。ですが、これまでの『マセマシリーズ』や『標準問題精講』がただの暗記でなく理解ができている上での運用ができているのであれば、問題なく理解ができてきます。このレベルをクリアできれば入試問題の理解ができるようになるのも後もう少しです! 頑張りましょう!
問題を解くときのできる人とできない人の差とは?
問題を理解している時に数学ができる人はどのように理解しているのか?、数学ができてない人はどのように理解しているのか?という差をご説明します。勉強している最中にできない思考に陥らないようにしましょう。
できない人はこう考える!
■図を書かない(イメージできない)
数学ができない人ほど、図を書かない人が多いです。図形問題の時は必ず図を書いて考えましょう。実際に図を書いていくことで、直感的にこの図形はこの硬式を使えばいいんだなというのが見えてきます。
できる人はこう考える!
■図を書く
図を書くのは当然として、立体の問題を解くときに、断面図まで書けるかが1つの差をつけるポイントです。
図1:全体図、図2:断面図
このような断面図にすると、内接する球の半径は、二等辺三角形△PMNに内接する円の半径と同じであることがわかります(Nは線分CDの中点)。ここで、直線と円の接点において、接点と円の中心を結ぶ線分は直線に垂直になります。よって、球の半径をrとすると、△PMNの面積は
で表されます。また、△PMNはMNを底辺とする二等辺三角形であるので、MNを底辺とした時、高さは
になります。よって、△PMNの面積は
のようになります。この二通りで表された△PMNの面積は等しいので、
の式が成り立ちます。よって、球の半径は
』で表されます。』
Published by