偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 資料請求
  • 資料請求
  • カウンセリング
  • お電話
慶應環境情報2017

2017年慶應義塾大学環境情報|過去問徹底研究 大問5

偏差値30からの早稲田慶應対策専門個別指導塾
HIRO ACADEMIA presents

方針の立て方
(q=0の場合を除けば)三次関数の最大最小問題なので,極値と端点のみを考察すればよいと考える.係数が文字であるため,極値が存在するか否かを考慮しなければならないことに注意.
後は典型的な解法で解ける.

解答例
(65)(66)……03
(67)(68)……-1
(69)(70)……03
(71)(72)……01
(73)(74)……00
(75)(76)……01
(77)(78)(79)(80)……\frac{01}{04}
(81)(82)(83)(84)……\frac{27}{08}

解説
〇存在領域\mathrm{A}((65)~(80)について)
f^\prime\left(x\right)=p-qx^2
よって,

(ⅰ)
f\left(x\right)の極値が-1\leqq x\leqq1に存在する条件は,「0<\frac{p}{q}かつ-1\leqq\pm\sqrt{\frac{p}{q}}\leqq1\Leftrightarrow0<\frac{p}{q}\leqq1である.
このもとで最大値が\frac{1}{3}以下となるのは,「(極大値)\leqq\frac{1}{3}かつf\left(\pm1\right)\leqq\frac{1}{3}」が満たされれば必要十分.
f\left(\sqrt{\frac{p}{q}}\right)=\frac{2p}{3}\sqrt{\frac{p}{q}},f\left(-1\right)=-p+\frac{q}{3},f\left(1\right)=p-\frac{q}{3}より,「(極大値)\leqq\frac{1}{3}かつf\left(\pm1\right)\leqq\frac{1}{3}」という条件は,
\begin{cases} f\left(\sqrt{\frac{p}{q}}\right)=\frac{2p}{3}\sqrt{\frac{p}{q}}\leqq\frac{1}{3} \\ -p+\frac{q}{3}\leqq\frac{1}{3} \\ p-\frac{q}{3}\leqq\frac{1}{3} \end{cases}\Leftrightarrow\begin{cases} 3p-1\leqq q\leqq3p+1 \\ \frac{p^3}{q}\leqq\frac{1}{4} \end{cases}
となる.0<\frac{p}{q}\leqq1と合わせれば,
\begin{cases} 3p-1\leqq q\leqq3p+1 \\ 0<\frac{p}{q}\leqq1 \\ \frac{p^3}{q}\leqq\frac{1}{4} \end{cases}……(答)
(ⅱ)
f\left(x\right)の極値がx<-1または1<xに存在する条件は,「0<\frac{p}{q}かつ-\sqrt{\frac{p}{q}}<-1かつ1<\sqrt{\frac{p}{q}}\Leftrightarrow1<\frac{p}{q}である.
このもとで最大値が\frac{1}{3}以下となるのは,f\left(\pm1\right)\leqq\frac{1}{3}が満たされれば必要十分.
f\left(-1\right)=-p+\frac{q}{3}f\left(1\right)=p-\frac{q}{3}より,f\left(\pm1\right)\leqq\frac{1}{3}という条件は,
\begin{cases} -p+\frac{q}{3}\leqq\frac{1}{3} \\ p-\frac{q}{3}\leqq\frac{1}{3} \end{cases}\Leftrightarrow3p-1\leqq q\leqq3p+1
となる.1<\frac{p}{q}と合わせれば,
\begin{cases} 3p-1\leqq q\leqq3p+1 \\ 1<\frac{p}{q} \end{cases}……(答) ※(ⅰ)が解ければ解答番号から答えは解かずして分かる.
(ⅲ)
f\left(x\right)の極値が存在しない条件は,\frac{p}{q}\leqq0またはq=0である.
このもとで最大値が\frac{1}{3}以下となるのは,f\left(\pm1\right)\leqq\frac{1}{3}が満たされれば必要十分.
f\left(-1\right)=-p+\frac{q}{3}f\left(1\right)=p-\frac{q}{3}より,f\left(\pm1\right)\leqq\frac{1}{3}という条件は,
\begin{cases} -p+\frac{q}{3}\leqq\frac{1}{3} \\ p-\frac{q}{3}\leqq\frac{1}{3} \end{cases}\Leftrightarrow3p-1\leqq q\leqq3p+1
となる.「\frac{p}{q}\leqq0またはq=0」と合わせれば,
\begin{cases} 3p-1\leqq q\leqq3p+1 \\ \frac{p}{q}\leqq0,q=0 \end{cases}……(答) ※(ⅰ)が解ければ解答番号から答えは解かずして分かる.
よって,領域\mathrm{A}を図示すると,

上図.ただし境界を含む.
領域\mathrm{A}の面積は,q軸での対称性から,
2\left[\int_{0}^{\frac{1}{2}}\left\{3p+1-\left(3p-1\right)\right\}dp+\int_{\frac{1}{2}}^{1}\left(3p+1-4p^3\right)dp\right]=2\left\{\left[2p\right]_0^{\frac{1}{2}}+\left[-p^4+\frac{3}{2}p^2+p\right]_{\frac{1}{2}}^1\right\}=\frac{27}{8}……(答)

LINE公式アカウント開始

LINE公式アカウントのみでの限定情報もお伝えします。ぜひご登録ください。

Published by

早慶専門個別指導塾HIRO ACADEMIA

偏差値30から早稲田慶應に合格するための日本で唯一の予備校です。 ただ覚えるだけの丸暗記では早稲田慶應に合格することはできません。 本ブログでは、当塾のメソッドでいかにして考えて早稲田慶應に合格することができるのかの一部をお伝えします。