偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 資料請求
  • 資料請求
  • カウンセリング
  • お電話

2018年慶應大学経済学部|過去問徹底研究 大問2

2019.10.07

方針の立て方 問題設定がやや奇天烈だか,題意を満たす関数を考えれば良く,それ以外は極めて平易な確率の問題である. (1)~(3)の前半((12)~(26))までは,特筆事項なし. (3)の後半((27)~(30))は,題意を満たす関数の特定がやや難しい.全ての関数の組み合わせに関して「を満たすすべて

  • …続きを読む
  • 方針の立て方

    問題設定がやや奇天烈だか,題意を満たす関数を考えれば良く,それ以外は極めて平易な確率の問題である.
    (1)~(3)の前半((12)~(26))までは,特筆事項なし.
    (3)の後半((27)~(30))は,題意を満たす関数の特定がやや難しい.全ての関数の組み合わせに関して「0\leqq x\leqq2を満たすすべての実数xに対してf_2\left(x\right)>g_2\left(x\right)となるか」を調べるのはパターン数も多くとても面倒である.そこで,「必要条件で可能性を絞って,虱潰しする」という方法を取ろう.この考え方はよく使う手段であるから,おさえておこう.具体的には,「0\leqq x\leqq2を満たすすべての実数xに対してf_2\left(x\right)>g_2\left(x\right)となる」の必要条件「f_2\left(0\right)>g_2\left(0\right)かつf_2\left(2\right)>g_2\left(2\right)となる」を用いて,題意を満たす関数の組み合わせを絞っていく.「f_2\left(0\right)>g_2\left(0\right)かつf_2\left(2\right)>g_2\left(2\right)となる」というのは,(3)の前半((22)~(26))で考えているから,すぐに\left(f_2\left(x\right),g_2\left(x\right)\right)=\left(6x^2-10x+11,6x\right),\left(-6x+15,-3x^2+12\right)と分かる.後は,\left(f_2\left(x\right),g_2\left(x\right)\right)=\left(6x^2-10x+11,6x\right)と,\left(f_2\left(x\right),g_2\left(x\right)\right)=\left(-6x+15,-3x^2+12\right)の2つを虱潰しに調べればよい.

    解答例

    (12)(13)\frac{3}{4}
    (14)(15)(16)\frac{7}{12}
    (17)(18)(19)(20)(21)\frac{19}{120}
    (22)(23)(24)(25)(26)\frac{19}{128}
    (27)(28)(29)(30)\frac{3}{256}

    解説

    (1)
    f\left(1\right)>8となる確率((12)と(13)について)
    \left.\left(-6x+15\right)\right|_{x=1}=9,\left.\left(-3x^2+12\right)\right|_{x=1}=9,\left.\left(6x^2-10x+11\right)\right|_{x=1}=7,\left.6x\right|_{x=1}=6
    であるから,f\left(1\right)>8を満たすには,f\left(x\right)=-6x+15または,f\left(x\right)=-3x^2+12であれば必要十分.
    よって,f\left(1\right)>8となる確率は,
    \frac{7+5}{16}=\frac{3}{4}……(答)
    〇条件つき確率((14)~(16)について)
    \int_{0}^{2}\left(-6x+15\right)dx=\left[-3x^2+15x\right]_0^2=18,\int_{0}^{2}\left(-3x^2+12\right)dx=\left[-x^3+12x\right]_0^2=16
    であるから,f\left(1\right)>8かつ\int_{0}^{2}f\left(x\right)dx>17となるのは,f\left(x\right)=-6x+15のとき.
    f\left(1\right)>8かつ\int_{0}^{2}f\left(x\right)dx>17となる確率は,\frac{7}{16}
    よって,求める条件つき確率は,
    \frac{\frac{7}{16}}{\frac{3}{4}}=\frac{7}{12}……(答)

    (2)
    \left.\left(-6x+15\right)\right|_{x=0}=15,\left.\left(-3x^2+12\right)\right|_{x=0}=12,\left.\left(6x^2-10x+11\right)\right|_{x=0}=11,\left.6x\right|_{x=0}=0
    \left.\left(-6x+15\right)\right|_{x=2}=3,\left.\left(-3x^2+12\right)\right|_{x=2}=0,\left.\left(6x^2-10x+11\right)\right|_{x=2}=15,\left.6x\right|_{x=2}=12
    であるから,f_1\left(0\right)>g_1\left(0\right)かつf_1\left(2\right)>g_1\left(2\right)となるような,f_1\left(x\right),g_1\left(x\right)の組み合わせは,\left(f_1\left(x\right),g_1\left(x\right)\right)=\left(6x^2-10x+11,6x\right),\left(-6x+15,-3x^2+12\right)の2通り.
    よって,求める確率は,
    \frac{3}{16}\cdot\frac{1}{15}+\frac{7}{16}\cdot\frac{5}{15}=\frac{19}{120}……(答)

    (3)
    f_2\left(0\right)>g_2\left(0\right)かつf_2\left(2\right)>g_2\left(2\right)となる確率((22)~(26)について)
    前問と同様に,f_2\left(0\right)>g_2\left(0\right)かつf_2\left(2\right)>g_2\left(2\right)となるのは\left(f_1\left(x\right),g_1\left(x\right)\right)=\left(6x^2-10x+11,6x\right),\left(-6x+15,-3x^2+12\right)の2通り.
    よって,求める確率は,
    \frac{3}{16}\cdot\frac{1}{16}+\frac{7}{16}\cdot\frac{5}{16}=\frac{19}{128}……(答)
    0\leqq x\leqq2を満たすすべての実数xに対してf_2\left(x\right)>g_2\left(x\right)となる確率((27)~(30)について)
    0\leqq x\leqq2を満たすすべての実数xに対してf_2\left(x\right)>g_2\left(x\right)となる関数の組\left(f_2\left(x\right),g_2\left(x\right)\right)を考える.
    まず,x=0,2で満たす必要がある(つまり,f_2\left(0\right)>g_2\left(0\right)かつf_2\left(2\right)>g_2\left(2\right)となる必要がある)ため,考えられる組は,\left(f_2\left(x\right),g_2\left(x\right)\right)=\left(6x^2-10x+11,6x\right),\left(-6x+15,-3x^2+12\right)の高々2通り.
    ここで,
    6x^2-10x+11-6x=6x^2-16x+11=6\left(x-\frac{4}{3}\right)^2+\frac{1}{3}
    であり,全ての実数xに対して6\left(x-\frac{4}{3}\right)^2+\frac{1}{3}>0であるから,\left(f_2\left(x\right),g_2\left(x\right)\right)=\left(6x^2-10x+11,6x\right)は題意を満たす.
    一方で
    -6x+15-\left(-3x^2+12\right)=3x^2-6x+3=3\left(x-1\right)^2であり,3\left(x-1\right)^2x=10となってしまうから,\left(f_2\left(x\right),g_2\left(x\right)\right)=\left(-6x+15,-3x^2+12\right)は題意を満たさない.
    よって,求める確率は,\left(f_2\left(x\right),g_2\left(x\right)\right)=\left(6x^2-10x+11,6x\right)となる確率と等しく,
    \frac{3}{16}\cdot\frac{1}{16}=\frac{3}{256}……(答)

2018年慶應大学経済学部|過去問徹底研究 大問1

2019.10.07

方針の立て方 (1)(2)は典型問題であるため特筆事項なし. (3)は三角形が二等辺三角形になることを利用する. (4)は角度に関する情報が与えられているため,ベクトルの内積を用いて求めるか,或いはその方法の原理となっている余弦定理から攻めると判断する. 前問の議論と合わせると,三角形の全ての辺の長

  • …続きを読む
  • 方針の立て方

    (1)(2)は典型問題であるため特筆事項なし.
    (3)は三角形\mathrm{PQR}が二等辺三角形になることを利用する.
    (4)は角度に関する情報が与えられているため,ベクトルの内積を用いて求めるか,或いはその方法の原理となっている余弦定理から攻めると判断する.

    前問の議論と合わせると,三角形\mathrm{PQR}の全ての辺の長さの情報が分かっているので,本解答ではベクトルによる解法ではなく,余弦定理による解法を用いた.

    解答例

    (1)5
    (2)5
    (3)4
    (4)5
    (5)4
    (6)1
    (7)9
    (8)(9)16
    (10)8
    (11)3

    解説

    x^2+y^2-8x-2ay+a^2=0\Leftrightarrow\left(x-4\right)^2+\left(y-a\right)^2=16
    よって,\mathrm{P}\left(4,a\right)であり,半径は4である.
    (1)
    \mathrm{P}\left(4,a\right)l\colon y=x+1上の点であるならば,
    a=4+1=5……(答)

    (2)
    \mathrm{P}\left(4,a\right)l\colon y=x+1の距離は,点と直線の距離の公式より,
    \frac{\left|4-a+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\frac{\left|5-a\right|}{\sqrt2}
    これが半径4より小さければ必要十分であるため,
    \frac{\left|5-a\right|}{\sqrt2}<4\Leftrightarrow\left|5-a\right|<4\sqrt2\Leftrightarrow-4\sqrt2<5-a<4\sqrt2\Leftrightarrow5-4\sqrt2<a<5+4\sqrt2……(答)

    (3)
    \begin{cases} y=x+1 \\ \left(x-4\right)^2+\left(y-a\right)^2=16 \end{cases}\Leftrightarrow\left(x,y\right)=\left(\frac{3+a\pm\sqrt{-a^2+10a+7}}{2},\frac{5+a\pm\sqrt{-a^2+10a+7}}{2}\right)(複号同順)
    よって,
    \mathrm{Q}\left(\frac{3+a+\sqrt{-a^2+10a+7}}{2},\frac{5+a+\sqrt{-a^2+10a+7}}{2}\right),\mathrm{R}\left(\frac{3+a-\sqrt{-a^2+10a+7}}{2},\frac{5+a-\sqrt{-a^2+10a+7}}{2}\right)と表せる(\sqrt{-a^2+10a+7}の係数の\pmのどちらを点\mathrm{Q},点\mathrm{R}とするかは本来決められないが,上記のように+の方を点\mathrm{Q}-の方を点\mathrm{R}とおいて一般性を失わない).
    これより,
    \vec{\mathrm{QR}}=\left(\sqrt{-a^2+10a+7},\sqrt{-a^2+10a+7}\right)
    \therefore\left|\vec{\mathrm{QR}}\right|=\sqrt{\left(\sqrt{-a^2+10a+7}\right)^2+\left(\sqrt{-a^2+10a+7}\right)^2}=\sqrt{2\left(-a^2+10a+7\right)}
    \mathrm{P}と辺\mathrm{QR}との距離は\frac{\left|5-a\right|}{\sqrt2}であるから,三角形\mathrm{PQR}の面積は
    \frac{1}{2}\cdot\frac{\left|5-a\right|}{\sqrt2}\cdot\sqrt{2\left(-a^2+10a+7\right)}=\frac{\left|5-a\right|\sqrt{-a^2+10a+7}}{2}
    これが8となるのは,
    \frac{\left|5-a\right|\sqrt{-a^2+10a+7}}{2}=8\Leftrightarrow a^4-20a^3+118a^2-180a+81=0\Leftrightarrow\left(a-1\right)^2\left(a-9\right)^2=0\Leftrightarrow a=1,9……(答)

    (4)
    \mathrm{PQ}\mathrm{PR}は円Cの半径にあたるから,長さは4である.
    よって,余弦定理より,
    {\mathrm{QR}}^2={\mathrm{PQ}}^2+{\mathrm{PR}}^2-2\cdot \mathrm{PQ}\cdot \mathrm{PR}\cdot\cos{\angle\mathrm{QPR}}\Leftrightarrow\left(\sqrt{2\left(-a^2+10a+7\right)}\right)^2=4^2+4^2-2\cdot4\cdot4\cdot\mathrm{cos} {{150}^\circ}\Leftrightarrow\left(a-5\right)^2=16-8\sqrt3……(答)

2018年早稲田大学政治経済学部|過去問徹底研究 大問5

2019.10.07

方針の立て方 (1) 特筆事項なし. (2) 考えるべき条件は『「2戦1敗」し,かつ「優勝する」こと』である.よって,「2戦1敗」する場合をまず考え,その中から「優勝する」場合を考えればよい.ここで,『「2戦1敗」し,かつ「優勝しない」』という場合の数が少ないということに気付けば,「優勝しない」場合

  • …続きを読む
  • 方針の立て方

    (1)
    特筆事項なし.

    (2)
    考えるべき条件は『「2戦1敗」し,かつ「優勝する」こと』である.よって,「2戦1敗」する場合をまず考え,その中から「優勝する」場合を考えればよい.ここで,『「2戦1敗」し,かつ「優勝しない」』という場合の数が少ないということに気付けば,「優勝しない」場合を求め,それを取り除く方がよいと判断する.(※これは実は余事象の考え方である)

    (3)
    前問と同様に「1戦2敗」する場合をまず考え,その中から「優勝する」場合を考えればよいが,これを満たすことはないため,0である.

    (4)
    (1)~(3)までの解答を合わせれば,リーグ戦でチームAが優勝する確率は求まる.よって,トーナメント戦でチームAが優勝する確率を求め,素直に比較すればよいと判断する.

    解答例

    (1)p^3

    (2)
    チームAが2勝1敗となる確率を求める.
    どのチームに負けるかで3通りあるので,3\times p^2\left(1-p\right)=3p^2\left(1-p\right)
    チームAの戦績が2勝1敗だったとしても,チームAに勝ったチームが全勝すると,チームAは優勝できない.チームAが2勝1敗で,かつ,チームAに勝ったチームが全勝する確率は,チームAとの対戦以外の対戦2回にも勝つ確率を考えればいいので,3p^2\left(1-p\right)\times\left(\frac{1}{2}\right)^2=\frac{3}{4}p^2\left(1-p\right)
    よって,求める確率は,
    3p^2\left(1-p\right)-\frac{3}{4}p^2\left(1-p\right)=\frac{9}{4}p^2\left(1-p\right)……(答)

    (3)
    チームAを負かした2チームについて着目する.チームAに勝っているので,両チームとも1勝はしていることになる.ここで,この2チーム同士の試合を考えると,必ずどちらかが勝つので,どちらかのチームの勝利数は,この段階で2となるはずである.よって,1勝2敗のチームAが優勝することはない.
    よって,求める確率は0……(答)

    (4)
    結論:リーグ戦……(答)
    理由:0勝3敗で優勝することはないため,リーグ戦でAが優勝する確率は(1)~(3)の結果と合わせて考えると,p^3+\frac{9}{4}p^2\left(1-p\right)=\frac{1}{4}p^2\left(9-5p\right)である.一方,トーナメント戦で優勝する確率はp^2である(\because2回勝てば優勝する).ここで,両者の差を取って考えると,
    \left\{\frac{1}{4}p^2\left(9-5p\right)\right\}-\left\{p^2\right\}=\frac{5}{4}p^2\left(1-p\right)>0より,p^2<\frac{1}{4}p^2\left(9-5p\right)
    これはリーグ戦で優勝する確率が,トーナメント戦で優勝する確率より大きいことに他ならない.

    解説

    (1)
    A対B…確率pで勝つ
    A対C…確率pで勝つ
    A対D…確率pで勝つ
    よって,チームAが全試合に勝利する確率はp^3となる.
    全勝すれば優勝するので,求める確率はp^3……(答)

2018年早稲田大学政治経済学部|過去問徹底研究 大問4

2019.10.07

方針の立て方 (1) 実数解の範囲についての問題であるから,解の配置問題の解法で解けばよい. (2) 一先ずは素直に複素数の絶対値の定義に従って計算することを考え,を求める.二次方程式の解は,公式を用いれば直接表現できるため,が求まり後は絶対値を求めればよい. (3) 前問でを考えたため,「かつ」の

  • …続きを読む
  • 方針の立て方

    (1)
    実数解の範囲についての問題であるから,解の配置問題の解法で解けばよい.

    (2)
    一先ずは素直に複素数の絶対値の定義に従って計算することを考え,\alphaを求める.二次方程式の解は,公式を用いれば直接表現できるため,\alphaが求まり後は絶対値を求めればよい.

    (3)
    前問で\left|\alpha\right|を考えたため,「\left|\alpha\right|<1かつ\left|\beta\right|<1」の条件はa,bを用いて書き下せる.後は\alpha,\betaが虚数であるという条件をa,bを用いて書き下し,合わせればよい.

    解答例

    (1)

    上図斜線部.但し境界はb=-\frac{1}{4}a^2-2<a<2の区間のみを含み,他は含まない.……(答)

    (2)\left|\alpha\right|=\sqrt{-b}

    (3)

    上図斜線部.但し境界は含まない.……(答)

    解説

    (1)
    f\left(x\right)=x^2-ax-bとおいて,y=f\left(x\right)x軸の交点が-1<x<1の範囲になるようにすれば必要十分.
    判別式の条件より,a^2+4b\geqq0\Leftrightarrow b\geqq-\frac{1}{4}a^2……①
    軸の条件より,-1<\frac{a}{2}<1\Leftrightarrow-2< a <2……②
    端点(x=\pm1)の条件より,\begin{cases} f\left(-1\right)>0 \\ f\left(1\right)>0 \end{cases}\Leftrightarrow\begin{cases} 1+a-b>0 \\ 1-a-b>0 \end{cases}\Leftrightarrow\begin{cases} a+1>b \\ -a+1>b \end{cases}……③
    ①~③を図示すれば,

    上図斜線部.但し境界はb=-\frac{1}{4}a^2-2<a<2の区間のみを含み,他は含まない.……(答)

    (2)
    判別式は負となることに注意して,2次方程式:x^2-ax-b=0を解くと,
    x=\frac{a\pm\sqrt{-a^2-4b}i}{2}
    \therefore\left|\alpha\right|=\sqrt{\frac{a\pm\sqrt{-a^2-4b}i}{2}\cdot\frac{a\mp\sqrt{-a^2-4b}i}{2}}=\sqrt{-b}……(答)

    (3)
    判別式は負となるから,b<-\frac{1}{4}a^2……①
    \left|\alpha\right|=\left|\beta\right|=\sqrt{-b}であるから,\left|\alpha\right|<1かつ\left|\beta\right|<1という条件は,0\leqq-b<1\Leftrightarrow-1<b\leqq0……②となる.
    ①と②を図示すれば,

    上図斜線部.但し境界は含まない.……(答)

2018年早稲田大学政治経済学部|過去問徹底研究 大問3

2019.10.07

方針の立て方 (1) 売り上げがになる.これは二変数関数であるが,を用いれば一変数関数になり,後は通常の最大最小問題で考えればよい. (2)(3)利益がとなる.後は(1)と同様に一変数関数に直して考えればよい. 解答例 (1) (2) よって,のとき利益が最大となる.よって, ……(答) (3) よ

  • …続きを読む
  • 方針の立て方

    (1)
    売り上げがpyになる.これは二変数関数であるが,y=10-pを用いれば一変数関数になり,後は通常の最大最小問題で考えればよい.
    (2)(3)利益がpy-c\left(y\right)となる.後は(1)と同様に一変数関数に直して考えればよい.

    解答例

    (1)\left(p,y\right)=\left(5,5\right)

    (2)
    py-c\left(y\right)=p\left(10-p\right)-\left(10-p\right)^2=-2p^2+30p-100=-2\left(p-\frac{15}{2}\right)^2+\frac{25}{2}
    よって,p=7,8のとき利益が最大となる.よって,y=3,2
    \therefore\left(p,y\right)=\left(7,3\right),\left(8,2\right)……(答)

    (3)
    py-c\left(y\right)=-2y^2-10y+20=-2\left(y+\frac{5}{2}\right)^2+\frac{65}{2}
    1\leqq yより,y=1のとき利益が最大となる.よって,p=10-y=9
    \therefore\left(p,y\right)=\left(9,1\right)……(答)

    解説

    1\leqq yより,p\leqq9である.
    (1)
    売上は,
    py=p\left(10-p\right)=-p^2+10p=-\left(p-5\right)^2+25
    \therefore p=5のとき売上は最大値となる.よって,y=10-p=5
    \therefore\left(p,y\right)=\left(5,5\right)……(答)

2018年早稲田大学政治経済学部|過去問徹底研究 大問2

2019.10.07

方針の立て方 (1)特筆事項なし. (2)(3)領域が指定されている上での最大最小問題であるため,線形計画法で考える. 解答例 (1)と (2) (3) 解説 (1) 上図のように補助線を引いて考えれば,求める座標は,と……(答) (2) 線形計画法の考え方を用いれば,最大値を取るときのは(1)で求

  • …続きを読む
  • 方針の立て方

    (1)特筆事項なし.
    (2)(3)領域が指定されている上での最大最小問題であるため,線形計画法で考える.

    解答例

    (1)\left(a,a+b\right)\left(a+b,b\right)
    (2)\sqrt{2a^2+2ab+b^2}
    (3)\frac{ab}{\sqrt{a^2+b^2}}

    解説


    (1)
    上図のように補助線を引いて考えれば,求める座標は,\left(a,a+b\right)\left(a+b,b\right)……(答)

    (2)
    線形計画法の考え方を用いれば,最大値を取るときのPは(1)で求めた2点の内のいずれかだと分かる.
    原点と\left(a,a+b\right)との距離は\sqrt{a^2+\left(a+b\right)^2}
    原点と\left(a+b,b\right)との距離は\sqrt{\left(a+b\right)^2+b^2}
    a>bより,\sqrt{\left(a+b\right)^2+b^2}<\sqrt{a^2+\left(a+b\right)^2}となる.
    よって,求める最大値は,
    \sqrt{a^2+\left(a+b\right)^2}=\sqrt{2a^2+2ab+b^2}・・・・・・(答)

    (3)
    \mathrm{P}が線分\mathrm{AB}上にあり,かつ\mathrm{OP}\mathrm{AB}が直交するとき,線分\mathrm{OP}の長さは最小となる.
    直線\mathrm{AB}の式はy=-\frac{a}{b}x+aであるから,直線\mathrm{OP}の式はy=\frac{b}{a}xとなる.
    よって,直線\mathrm{AB}と直線\mathrm{OP}の交点は\left(\frac{a^2b}{a^2+b^2},\frac{{ab}^2}{a^2+b^2}\right)である.
    よって,求める最小値は,
    \sqrt{\left(\frac{a^2b}{a^2+b^2}\right)^2+\left(\frac{{ab}^2}{a^2+b^2}\right)^2}=\frac{ab}{\sqrt{a^2+b^2}}……(答)

2018年早稲田大学政治経済学部|過去問徹底研究 大問1

2019.10.07

方針の立て方 (1) 円の問題(それも半径の情報が与えられている問題)であるため,中心を基準に考える. (2) はとの二変数関数であるため,何とかして一変数化したい.するとを用いることが思いつく. (3) 定義通り計算すればよい. 解答例 (1) (2) (3)平均値:点 標準偏差: 解説 (1)

  • …続きを読む
  • 方針の立て方

    (1)
    円の問題(それも半径の情報が与えられている問題)であるため,中心を基準に考える.

    (2)
    zxyの二変数関数であるため,何とかして一変数化したい.するとxy=4を用いることが思いつく.

    (3)
    定義通り計算すればよい.

    解答例
    (1)2\sqrt3
    (2)0\leqq z<4
    (3)平均値:75
    標準偏差:25\sqrt3

    解説

    (1)

    左図のように,正三角形に分割して考えると,
    求める面積は,
    6\times\frac{1}{2}\cdot\frac{2}{\sqrt3}\cdot1=2\sqrt3……(答)

    (2)
    z=\left(\log_2{x}\right)^2\left(\log_2{\frac{8}{x}}\right)=\left(\log_2{x}\right)^2\left(\log_2{8}-\log_2{x}\right)=\left(\log_2{x}\right)^2\left(3-\log_2{x}\right)=-\left(\log_2{x}\right)^3+3\left(\log_2{x}\right)^2
    y>1より,\frac{4}{x}>1x\geqq 1と合わせると,1\leqq x<4
    0\leqq\log_2{x}<2
    ここで,\log_2{x}=Xとおけば,
    z=-X^3+3X^2(0\leqq X<2)
    \frac{dz}{dX}=-3X^2+6X=-3X\left(X-2\right)
    増減表を描くと,

    X 0 \cdots 2
    \frac{dz}{dX} 0 + 0
    z 0 \nearrow 4

    \therefore0\leqq z<4……(答)

    (3)
    平均値:\frac{25\cdot0+75\cdot100}{100}=75点……(答)
    標準偏差:\sqrt{\frac{25\cdot\left(0-75\right)^2+75\cdot\left(100-75\right)^2}{100}}=25\sqrt3……(答)

2017年慶應大学経済学部|過去問徹底研究 大問6

2019.10.06

方針の立て方 (1) 絶対値の問題では,絶対値の中身の正負で場合分けをする.すると,を境目にして場合分けが生じることが分かるため,本解答の(ⅰ)~(ⅲ)のように場合分けすることが分かる. (2) 考える図形を図示して,どこの面積を求めれば良いかを特定する.後は積分計算を行うだけ. (3) 解析を行う

  • …続きを読む
  • 方針の立て方

    (1)
    絶対値の問題では,絶対値の中身の正負で場合分けをする.すると,x=-1,0を境目にして場合分けが生じることが分かるため,本解答の(ⅰ)~(ⅲ)のように場合分けすることが分かる.

    (2)
    考える図形を図示して,どこの面積を求めれば良いかを特定する.後は積分計算を行うだけ.

    (3)
    解析を行うには,点\mathrm{A},\mathrm{B}の座標を具体的に書き下す必要があるが,そのままでは全部で(点\mathrm{A},\mathrm{B}がどの関数上に乗っているかで)6通りを考えることになる.高々6通りであるから,このまま考えても良いが,もう少し絞れないかを検討してみる.実際に満たす点\mathrm{A},\mathrm{B}を具体的に考えると,点\mathrm{A}y軸の左側,点\mathrm{B}y軸の右側になければならないと分かるから,点\mathrm{B}は必ずF\left(x\right)=-\frac{1}{2}x^2+2x+\frac{3}{2}上に乗っていると分かる.これより,考えるべきパターンは2通りに減少する.後は,本解答のように解析するのみ.

    解答例

    (1)
    \left|x+1\right|=\begin{cases} -x-1\left(x\leqq-1\right) \\ x+1\left(-1\leqq x\right) \end{cases},\int_{-1}^{x}\left(1-\left|t\right|\right)dt=\begin{cases} \int_{-1}^{x}\left(1+t\right)dt\left(x\leqq0\right) \\ \int_{-1}^{0}\left(1+t\right)dt+\int_{0}^{x}\left(1-t\right)dt\left(0\leqq\ x\right) \end{cases}となる.
    (ⅰ)x\leqq-1のとき
    F\left(x\right)=-x-1+\int_{-1}^{x}\left(1+t\right)dt=-x-1+\left[t+\frac{1}{2}t^2\right]_{-1}^x=\frac{1}{2}x^2-\frac{1}{2}
    (ⅱ)-1\leqq x\leqq0のとき
    F\left(x\right)=x+1+\int_{-1}^{x}\left(1+t\right)dt=x+1+\left[t+\frac{1}{2}t^2\right]_{-1}^x=\frac{1}{2}x^2+2x+\frac{3}{2}
    (ⅲ)0\leqq xのとき
    F\left(x\right)=x+1+\int_{-1}^{0}\left(1+t\right)dt+\int_{0}^{x}\left(1-t\right)dt=x+1+\left[t+\frac{1}{2}t^2\right]_{-1}^0+\left[t-\frac{1}{2}t^2\right]_0^x=-\frac{1}{2}x^2+2x+\frac{3}{2}
    以上,(ⅰ)~(ⅲ)より,
    F\left(x\right)=\begin{cases} \frac{1}{2}x^2-\frac{1}{2}\left(x\leqq-1\right) \\ \frac{1}{2}x^2+2x+\frac{3}{2}\left(-1\leqq x\leqq0\right) \\ -\frac{1}{2}x^2+2x+\frac{3}{2}\left(0\leqq x\right) \end{cases}……(答)

    (2)
    前問で求めたF\left(x\right)のグラフを描くと,

    上図.
    よって,求める面積は,
    \int_{-1}^{0}\left(\frac{1}{2}x^2+2x+\frac{3}{2}\right)dx+\int_{0}^{2+\sqrt7}\left(-\frac{1}{2}x^2+2x+\frac{3}{2}\right)dx=\left[\frac{1}{6}x^3+x^2+\frac{3}{2}x\right]_{-1}^0+\left[-\frac{1}{6}x^3+x^2+\frac{3}{2}x\right]_0^{2+\sqrt7}=\frac{19+7\sqrt7}{3}……(答)

    (3)
    a<0かつ0<bが必要であり,\mathrm{B}\left(b,-\frac{1}{2}b^2+2b+\frac{3}{2}\right)となる.
    (ⅰ)a\leqq-1のとき
    \mathrm{A}\left(a,\frac{1}{2}a^2-\frac{1}{2}\right)となる.
    よって,\mathrm{A},\mathrm{B}を結ぶ線分の中点の座標は,\left(\frac{a+b}{2},\frac{a^2-b^2}{4}+b+\frac{1}{2}\right)と書ける.これが\left(0,\frac{3}{2}\right)であるとき,
    \begin{cases} \frac{a+b}{2}=0 \\ \frac{a^2-b^2}{4}+b+\frac{1}{2}=\frac{3}{2} \end{cases}\Leftrightarrow\begin{cases} a=-1 \\ b=1 \end{cases}
    これはa\leqq-1かつ0<bを満たす.よって,\mathrm{A}\left(-1,0\right),\mathrm{B}\left(1,3\right)となる.
    このとき傾きmは,m=\frac{3}{2}となる.
    (ⅱ)-1\leqq a<0のとき
    \mathrm{A}\left(a,\frac{1}{2}a^2+2a+\frac{3}{2}\right)となる.
    よって,\mathrm{A},\mathrm{B}を結ぶ線分の中点の座標は,\left(\frac{a+b}{2},\frac{a^2-b^2}{4}+a+b+\frac{3}{2}\right)と書ける.これが\left(0,\frac{3}{2}\right)であるとき,
    \begin{cases} \frac{a+b}{2}=0 \\ \frac{a^2-b^2}{4}+a+b+\frac{3}{2}=\frac{3}{2} \end{cases}\Leftrightarrow a+b=0
    -1\leqq a<0より,0<b\leqq1.これは0<bを満たす.よって,\mathrm{A}\left(a,\frac{1}{2}a^2+2a+\frac{3}{2}\right),\mathrm{B}\left(-a,-\frac{1}{2}a^2-2a+\frac{3}{2}\right)となる.
    このとき傾きmは,m=\frac{-\frac{1}{2}a^2-2a+\frac{3}{2}-\left(\frac{1}{2}a^2+2a+\frac{3}{2}\right)}{-a-a}=\frac{a+4}{2}となる.
    -1\leqq a<0より,\frac{3}{2}\leqq\frac{a+4}{2}<2\Leftrightarrow\frac{3}{2}\leqq m<2
    以上,(ⅰ)と(ⅱ)より,求める範囲は,
    0<b\leqq1,\frac{3}{2}\leqq m<2……(答)

2017年慶応大学経済学部|過去問徹底研究 大問5

2019.10.06

方針の立て方 全て基本問題であり,特筆事項なし. 解答例 (1) よって,の実部はで,虚部は0……(答) よって,の実部はで,虚部は……(答) (2) のとき,,. ……(答) (3) より,の実部はで,虚部はである. よって,求める範囲は は全ての実数,……(答) (4) 真数条件より, の実部は

  • …続きを読む
  • 方針の立て方

    全て基本問題であり,特筆事項なし.

    解答例

    (1)
    z\bar{z}=\left|z\right|^2=\left(a^x\mathrm{cos} {y}\right)^2+\left(a^x\mathrm{sin} {y}\right)^2=a^{2x}
    よって,z\bar{z}の実部はa^{2x}で,虚部は0……(答)
    z^2=\left\{a^x\mathrm{cos} {y}+\left(a^x\mathrm{sin} {y}\right)i\right\}^2=a^{2x}\left\{{\mathrm{cos}}^2y-{\mathrm{sin}}^2y+2i\mathrm{sin} {y}\mathrm{cos} {y}\right\}=a^{2x}\mathrm{cos} {2y}+ia^{2x}\mathrm{sin} {2y}
    よって,z^2の実部はa^{2x}\mathrm{cos} {2y}で,虚部はa^{2x}\mathrm{sin} {2y}……(答)

    (2)
    x=0のとき,z^2=\mathrm{cos} {2y}+i\mathrm{sin} {2y}z=\cos{y}-i\sin{y}
    \therefore z^2+\bar{z}=0\Leftrightarrow\left(\mathrm{cos}{2y}+\mathrm{cos} {y}\right)+i\left(\mathrm{sin}{2y}-\mathrm{sin} {y}\right)=0
    \therefore\begin{cases} \mathrm{cos}{2y}+\mathrm{cos} {y}=0 \\ \mathrm{sin}{2y}-\mathrm{sin} {y}=0 \end{cases}\Leftrightarrow\begin{cases} 2{\mathrm{cos}}^2y+\mathrm{cos} {y}-1=0 \\ 2\mathrm{sin}{y}\mathrm{cos} {y}-\mathrm{sin} {y}=0 \end{cases}\Leftrightarrow\begin{cases} \left(2\mathrm{cos}{y}-1\right)\left(\mathrm{cos}{y}+1\right) \\ \mathrm{sin}{y}\left(2\mathrm{cos}{y}-1\right)=0 \end{cases}\Leftrightarrow\begin{cases} \mathrm{cos}{y}=-1,\frac{1}{2} \\ \mathrm{sin}{y}=0,\mathrm{cos} {y}=\frac{1}{2} \end{cases}\Leftrightarrow\begin{cases} y=\frac{1}{3}\pi,\pi,\frac{5}{3}\pi \\ y=0,\frac{\pi}{3},\pi,\frac{5}{3}\pi \end{cases}\Leftrightarrow y=\frac{1}{3}\pi,\pi,\frac{5}{3}\pi……(答)

    (3)
    \bar{z}=a^x\mathrm{cos} {y}-ia^x\mathrm{sin} {y}より,\bar{z}の実部はa^x\mathrm{cos} {y}で,虚部は-a^x\mathrm{sin} {y}である.
    \therefore a^x\mathrm{cos} {y}>-a^x\mathrm{sin} {y}\Leftrightarrow\mathrm{cos} {y}+\mathrm{sin} {y}>0\Leftrightarrow\sqrt2\sin{\left(y+\frac{\pi}{4}\right)}>0\Leftrightarrow0\leqq y<\frac{3}{4}\pi,\frac{7}{4}\pi<y<2\pi
    よって,求める範囲は
    xは全ての実数,0\leqq y<\frac{3}{4}\pi,\frac{7}{4}\pi<y<2\pi……(答)

    (4)
    真数条件より,
    \begin{cases} a^x\mathrm{cos} {y}>0 \\ a^x\mathrm{sin} {y}>0 \end{cases}\Leftrightarrow\begin{cases} \mathrm{cos}{y}>0 \\ \mathrm{sin}{y}>0 \end{cases}\Leftrightarrow 0<y<\frac{1}{2}\pi
    wの実部は\log_a{\left(a^x\cos{y}\right)}=x+\log_a{\cos{y}}で,虚部は\log_a{\left(a^x\sin{y}\right)}=x+\log_a{\sin{y}}であるから,x+\log_a{\cos{y}}>x+\log_a{\sin{y}}\Leftrightarrow\log_a{\frac{\cos{y}}{\sin{y}}}>0
    0<a<1より,
    0<\frac{\cos{y}}{\sin{y}}<1
    真数条件0<y<\frac{1}{2}\piを考慮すれば,0<\frac{\cos{y}}{\sin{y}}は必ず満たされ,\frac{\cos{y}}{\sin{y}}<1\Leftrightarrow\cos{y}-\sin{y}<0\Leftrightarrow\sqrt2\sin{\left(y+\frac{3}{4}\pi\right)}<0\Leftrightarrow\frac{\pi}{4}<y<\frac{\pi}{2}となる.
    よって,求める範囲は
    xは全ての実数,\frac{1}{4}\pi<y<\frac{1}{2}\pi……(答)

2017年慶應大学経済学部|過去問徹底研究 大問4

2019.10.06

方針の立て方 (1)(2)は典型問題であり特筆事項なし. (3)について,の中心が訊かれていることとの半径の情報が与えられていることから,の中心を文字でおき,の方程式を立式することを考える.その後は交点の座標を出し,計算すれば良い. 解答例 (1) 上の点をとおくと,であることより,実数を用いて,

  • …続きを読む
  • 方針の立て方

    (1)(2)は典型問題であり特筆事項なし.
    (3)について,Sの中心が訊かれていることとSの半径の情報が与えられていることから,Sの中心を文字でおき,Sの方程式を立式することを考える.その後は交点の座標を出し,計算すれば良い.

    解答例

    (1)
    l上の点を\left(x,y,z\right)とおくと,\vec{\mathrm{AB}}=\vec{\mathrm{OB}}-\vec{\mathrm{OA}}=\left(-2,2,1\right)であることより,実数tを用いて,
    \left(x,y,z\right)=\left(1,0,\frac{1}{2}\right)+t\left(-2,2,1\right)=\left(1-2t,2t,\frac{1}{2}+t\right)
    と書ける.
    よって,yz平面(x=0)との交点はt=\frac{1}{2}のときであり,座標は\left(0,1,1\right)……(答)

    (2)
    \mathrm{P}\left(1-2t,2t,\frac{1}{2}+t\right)(ただしtは実数)として,
    \mathrm{CP}=\sqrt{\left(1-2t-9\right)^2+\left\{2t-\left(-3\right)\right\}^2+\left(\frac{1}{2}+t\right)^2}=\sqrt{9t^2+45t+\frac{293}{4}}=\sqrt{9\left(t+\frac{5}{2}\right)^2+67}
    よって,t=-\frac{5}{2}のとき\mathrm{CP}は最小となる.
    \therefore\mathrm{P}\left(6,-5,-2\right)……(答)

    (3)
    球面Sの中心の座標は直線\mathrm{OC}上になることから,実数sを用いて,\left(9s,-3s,0\right)と書ける.よって,球面Sの方程式は,
    \left(x-9s\right)^2+\left(y+3s\right)^2+z^2=1
    と書ける.
    これと直線l\colon\left(x,y,z\right)=\left(1-2t,2t,\frac{1}{2}+t\right)との交点は,
    \left(1-2t-9s\right)^2+\left(2t+3s\right)^2+\left(\frac{1}{2}+t\right)^2=1\Leftrightarrow9t^2+\left(48s-3\right)t+90s^2-18s+\frac{1}{4}=0\Leftrightarrow t=\frac{1-16s\pm2\sqrt{-26s^2+10s}}{6}
    よって,
    \mathrm{Q}\left(1-2\cdot\frac{1-16s+2\sqrt{-26s^2+10s}}{6},2\cdot\frac{1-16s+2\sqrt{-26s^2+10s}}{6},\frac{1}{2}+\frac{1-16s+2\sqrt{-26s^2+10s}}{6}\right),\mathrm{R}\left(1-2\cdot\frac{1-16s-2\sqrt{-26s^2+10s}}{6},2\cdot\frac{1-16s-2\sqrt{-26s^2+10s}}{6},\frac{1}{2}+\frac{1-16s-2\sqrt{-26s^2+10s}}{6}\right)
    と表せる(t2\sqrt{-26s^2+10s}の係数の\pmのどちらを点\mathrm{Q},点\mathrm{R}とするかは本来決められないが,上記のように+の方を点\mathrm{Q}-の方を点\mathrm{R}とおいて一般性を失わない).
    これより,
    \vec{\mathrm{QR}}=\left(-\frac{4\sqrt{-26s^2+10s}}{3},\frac{4\sqrt{-26s^2+10s}}{3},\frac{2\sqrt{-26s^2+10s}}{3}\right)
    \therefore\left|\vec{\mathrm{QR}}\right|=\sqrt{\left(-\frac{4\sqrt{-26s^2+10s}}{3}\right)^2+\left(\frac{4\sqrt{-26s^2+10s}}{3}\right)^2+\left(\frac{2\sqrt{-26s^2+10s}}{3}\right)^2}=2\sqrt{-26s^2+10s}=2\sqrt{-26\left(s-\frac{5}{26}\right)^2+\frac{25}{26}}
    よって,s=\frac{5}{26}のとき,線分\mathrm{QR}の長さは最大値2\sqrt{\frac{25}{26}}=\frac{5\sqrt{26}}{13}を取る.……(答)
    また,このとき中心の座標は,\left(9\cdot\frac{5}{26},-3\cdot\frac{5}{26},0\right)=\left(\frac{45}{26},-\frac{15}{26},0\right)……(答)

LINE

  • 偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 早稲田校舎 : 〒162-0045
    東京都新宿区馬場下町9-7 ハイライフホーム早稲田駅前ビル4階
    TEL: 03-6884-7991
    営業時間: 月〜土 13:00-21:30 
  • 武蔵小杉校舎 : 〒211-0068
    神奈川県川崎市中原区小杉御殿町2丁目67セラヴィ小杉ビル4F
    TEL:044-819-6333
    営業時間: 月〜土 13:00-21:30 
  • Facebook Twitter
    Page Top

Copyright © BETELGEUSE corporation All Rights Reserved.