偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 資料請求
  • カウンセリング

最速文系数学勉強法|早慶圧勝レベルまで効率的に成績を上げる方法|基本編

2019.09.26

早慶・難関国立・難関私立大学を目指している受験生が当塾でどのように最速で数学を学んでいるのか、その勉強方法をお伝えします。 勉強はただやみくもに時間ばかりかけても成績は上がりません!適切な勉強方法、計画を建てて何をいつまでに行うのか?を決めておく必要があります。当塾で指導している最速で効率的に数学の

  • …続きを読む
  • 早慶・難関国立・難関私立大学を目指している受験生が当塾でどのように最速で数学を学んでいるのか、その勉強方法をお伝えします。
    勉強はただやみくもに時間ばかりかけても成績は上がりません!適切な勉強方法、計画を建てて何をいつまでに行うのか?を決めておく必要があります。当塾で指導している最速で効率的に数学の成績をあげる勉強方法の一部をお伝えいたします。

    <このページの読み方>

    ▶基本的に全部読んでいただくことを推奨しますが、数学ができない原因を知りたいのではなく、とにかく数学ができるようになるためにどうしたら良いのかを知りたい方は「応用編(アウトプット)」をお読みください。
    ▶必要参考書一覧も最後に載せてあります。
    *下記クリックすると、その部分まで飛んでいきます。

    [toc]

    なぜ数学が嫌いになるのか?

    他の科目と比べてなぜ数学きらいが多いのか?まずはそこから考えてみます。当塾には全国から数々の数学嫌いが集まってきます。数学の勉強法の前にまずどのような理由で数学ができなくなっているのかということとその簡単な解決策をお伝えしていきます。

    ケース① 圧倒的に計算が遅い

    [speech_bubble type="ln-flat" subtype="L1" icon="seitow1.gif" name=""]時間があれば、答えまでたどり着くんだけど。。。いつも最後までいけません。[/speech_bubble]

    生徒と授業をしていて問題を授業中に解いてもらう時があるのですが、計算の仕方が悪いのか,なかなか答えがでません。通常の生徒であれば、即答レベルの計算であっても、10秒近く考えてしまうことが多くなります。こういうケースで本人に聞くと「問題はわかっている。」とのことが多いです。ですが、一向に答えまでがでてきません。こうした生徒の場合ですと数学的主張を解釈する以前の段階で計算などができなくなります。そこでストレスがたまり、問題が解けるより前に数学が嫌いになってしまうのです。一度数学が嫌いになってしまったら数学が嫌いになってどんどんできなくなってしまうのです。

    こうした生徒の場合はまずは四則演算が大事です。毎日15分程度で良いので、毎日積み重ねて行くことによって四則演算を速くしていきましょう。計算練習の高速化は、ある種頭の回転の速さにもつながります。

    また計算が遅い、できないとその時点で理系終了で文系しか選択肢がなくなります。別に文系が悪いのではなく、選択肢がはじめから存在しないというのはツラいですね。このレベルで躓いている人は毎日繰り返し計算練習を行う習慣をつけていきましょう。3,4ヶ月もすれば圧倒的に早くすることができます。

    下記教材は分数といった小学校レベルから計算を開始していくため、久しく数学から離れていた医学部再受験の方であっても問題なく理解できるでしょう。

    数学勉強の初期段階では難しい問題を唸りながら行ってもできるようにはなりません。基本的な計算練習をひたすら行って、無意識でも計算の意味が具象化して理解できるレベルに持っていけるレベルまで持っていきましょう。

    ▶0からやりなおす中学数学の計算問題の使い方はこちらから

    ケース②公式の意味がわかっていない

    [speech_bubble type="ln-flat" subtype="L1" icon="seitow1.gif" name=""]数学なんて、公式にいれればいいだけで簡単な科目でしょ。[/speech_bubble]

    ケース①と同様に多いのが、この公式の意味が理解できてないという場合です。このケースの場合は逆に計算は速いという子に多いです。おそらく、計算練習をたくさん積んできたのでしょう。前述のように計算は数学ができるためには大事な部分です。

    ですが、意味の理解できてないことをひたすら繰り返しおこなっていてはいつまで経っても数学はできるようにはなりません。

    数学には”定義”という、どんな場合でも適応する言葉での約束事が存在します。この定義からなぜこの公式が成り立つのか?という部分を考えることができる(理解できる)ようになるのが、<入試では実際に自分の力で導けるように!>、重要です。公式を意味もわからずあてはめていくだけの勉強ではいつまで経っても数学はできるようになりません。
    上位の大学に行きたいのであれば、

    公式を見たらなぜこの公式が成り立っているのだろうか?という部分を考えるようにしましょう。
    例えば、相加相乗平均と不等式なら証明は5個以上挙げられると良いです。

    ケース③問題を丸暗記する

    [speech_bubble type="ln-flat" subtype="L1" icon="seitom1.gif" name=""]数学は暗記です。チャートを丸暗記すれば余裕ですよ。[/speech_bubble]

    ケース②と似ているのですが、まだ概念や公式の意味を理解してないのに青チャートやフォーカスゴールドを行う子に多いケースです。意味合いがわかっていないのに網羅系問題集を使って、とにかく問題のパターンを覚えてしまおうという考え方なのでしょう。学校の定期試験であればその方法は使えるかもしれません。ですが、入試というのは、基本的に(例外はあります)これまでにでたような問題はでてきません。

    ですから、意味もわからず問題を覚えるというのは愚の骨頂なのです。

    [speech_bubble type="ln-flat" subtype="L1" icon="seitom1.gif" name=""]青チャートを覚えればできるって話を聞いたことがありますがどうですか?[/speech_bubble]

    和田秀樹氏が提唱していた青チャート勉強法が未だに根強く残っているのか?青チャートさえ覚えれば東大でも受かる!と思い込んでいる人が多いようです。もちろん、青チャートの内容を理解して自身の頭のなかでパターン化されているのであれば問題ないでしょう。

    ですが、多くの勉強ができない子の場合、

    問題自体を覚えているだけで少しでも数字が変わったら応用が効かなくなってしまうレベルの丸暗記をしています。もちろん、このような覚え方では「丸暗記数学」となってしまい、いつまでたっても数学ができるよになりません。

    こうした場合には、論理展開を日本語で考える癖をつけるのが良いでしょう。
    なぜその次の式に展開したのか?というのがわからなければいつまで経っても自分自身で再現することができないので、できるようになりません。

    また公式の意味や定義が頭の中でしっかりと考える癖ができていれば、問題のパターンを覚える暗記に入っても頭の中で整理できるようになります。
    ですが、何も前提がないまま暗記をしてしまっては、どのように公式ができているのか?ということがわからないため、いつまで経っても理解ができるようになりません。
    その結果、成績が上がらないということにつながるのです。

    ケース④わからない数式が出てきた瞬間に考えない

    [speech_bubble type="ln-flat" subtype="L1" icon="seitom1.gif" name=""]こんな式展開見たことないからほったらかし・・[/speech_bubble]

    最後のケースですが、これはある程度数学の範囲を終えた段階での話ですが、、
    自分のわからないことになった瞬間に沈黙して解答にも何も書かない。という場合です。
    このケースの場合だと、数学の偏差値60までは順調に伸びていきます。
    ですが、それ以上となると難しいでしょう。
    よくよく文章を読んでみれば自身がこれまでにやってきたこと相違ないことがほとんどです。
    このような場合は文章を噛み砕いて、かつイメージ化して理解する癖、具体的に考えるとどうなるだろうか?ということを考えられるようになりましょう。
    ケース③でも述べましたが全ての問題のパターンを知っているということは難関大学においては多くないでしょう。

    ケース⑤計画の立て方が間違っている

    [speech_bubble type="ln-flat" subtype="L1" icon="seitom1.gif" name=""]過去問を解きまくればそのうちできるようになるでしょ!?[/speech_bubble]

    ケース②と似ていますが、「先に進まなきゃ・・」と焦ってムリな計画をたてるがあまり考えることを放棄することになってしまい、結果的に成績が上がらなくなるといういことになってしまうのです。

    たとえば三か月で青チャートを終わらせると決めたとき、問題数ごと単元ごとにある程度細分化した計画(1週間でどこまでやるかなど)を立てると思います。
    決められた時間で大量の問題を解かなければいけないので分からないとすぐ答えを見てしまっていませんか?すぐ答えを見て何か得られるものはあるのでしょうか?もちろん、この方法では思考力は身につきません。
    問題を自分の頭で解けるようにしてから、量をこなしたり、スピードを求めるようにしましょう。
    パターンを覚えていてくというのは成績を上げていく上では大事です。ですが、自分の覚えているものを使って“考える”というプロセスを経ずして成績を圧倒的に上げることは不可能です。
    最低でも1問に30分はかけて1問と向かい合い、自分の頭でじっくり考え、解ける喜びを感じてみてください。
    急がば回れとはよく言いますが、これは数学においても当てはまります。

    基礎

    数学ができるようになるためには、ただ単に問題のパターンを覚えるというだけではできるようにはなりません。上記で見てもらったように、多くの数学ができてない学生というのは、表面上の数値のみを暗記しているために数学ができなくなってしまっています。上記のようなことが発生しないようにするために、当塾では、基礎概念を把握→高速化→運用というプロセスを行っております。下記ではそのプロセスを詳しく説明していきます。

    基礎の基礎<中学数学について>

    高校数学を行う前に中学数学が理解できているかどうかを確認しましょう。特にこれまでの指導の中だと帰国子女で数学を全く勉強してないのに、帰国子女枠でレベルの高い進学校に入ってしまった学生、医学部志望など社会人になって学生時代数学は得意ではなかったけれど、勉強しなくてはならなくなった人の場合は中学数学から確認する必要があるでしょう。

    中学数学の段階で公式の意味を理解していないで計算練習ばかり繰り返していてはできるようになりません。

    概念把握

    数学における概念把握とは、「座標軸上での状態」と「四則演算の行い方」があたります。それぞれの分野において、何も考えずにいきなり公式を覚えるのではいけません。新しい分野には入った場合には常に「座標軸上での状態」と「四則演算の行い方」を確認しながら理解していきましょう。
    その上で、各分野で出てくる公式の証明が行えるようになることがあるでしょう。公式の証明をできるようにしておくというのは、その公式をなぜその部分で使用するのか?の意味が理解できません。ですから、全ての公式についてすぐに導出できるようにしておくべきでしょう。
    ただし、勉強の初期段階で公式が出てきたら、毎回導出ができるようにしていくということを行っていくと進みも悪いため、やる気がおこならない可能性があります。そのため、勉強の初期段階では、この公式はどのように成り立っているのか?ということを考える癖はつけつつ、公式を使って問題を解いてみるというのが先で良いでしょう。

    下記では実際に公式の証明を使用して、公式をどのように覚えていったらよいのかをお伝えしていきます。

    ベクトル 内積の公式を図形的に考える

    以下の様な図を考えたとき、

    △OABにおいて余弦定理より

     AB^{2}=OA^{2}+OB^{2}-2OAOB \theta

    = \big( x_{b} - x_{a} \big) ^{2} \big( y_{b} - y_{a} \big) ^{2}= \big( x_{a} ^{2} +y_{a} ^{2}\big) + \big(x_{b} ^{2} +y_{b} ^{2}\big) -2 \sqrt{x_{a} ^{2} +y_{a} ^{2}} \sqrt{x_{b} ^{2} +y_{b} ^{2}} cos \theta

     x _{b} ^{2} -2 x_{b}x_{a} + x _{a} ^{2} + y _{b} ^{2} -2 y_{b}y_{a} + y _{a} ^{2}=x _{a} ^{2} + y _{a} ^{2} + x _{b} ^{2}+ y _{b} ^{2}-2 \mid OA \mid \mid OB \mid cos \theta

    = x_{a} x_{b}+ y_{a} y_{b}= \mid \overrightarrow{a} \mid \mid \overrightarrow{b} \mid cos \theta

     \overrightarrow{a} \bullet \overrightarrow{b} = \mid \overrightarrow{a} \mid \mid \overrightarrow{b} \mid cos \theta

    記号を日本語で噛み砕く

    公式の意味を数学特有の記号Σ、∫、lim、fの操作の意味を日本語で理解しておくことは重要です。この辺りは英語の単語を覚えるのと同じです。単語の意味がわからないと英語の文章を読むことも書くこともできないのと同様に、記号の意味をわかっていなければ使うことはできません。私たちはdogと見た瞬間に、実際に人それぞれどのような犬を想像するかは違いますが「犬」を頭の中で想像します。数学の場合は、記号に対しての動作が決まっていますので、数学特有の記号を見た瞬間に皆同じことを考えることができるのです。
    ですが、数学ができない人は記号を見た瞬間に思考が停止してしまっています。

    たとえば、

    \sum_{k=1}^{n} k=\frac{n(n+1)}{2}

    この数式の意味はkに1からnまでいれて、それぞれ足しなさいという意味です。

    つまり

    \sum_{k=1}^{n} k=1+2+3+4+5+6+ \cdots +n=\frac{n(n+1)}{2}

    ということをΣを用いて書いているだけなのです。このような理解を記号を見た際にすぐにできているかどうか?というのが大事です。

    坂田アキラ先生のシリーズではそうした記号の使い方を様々な例を活用してわかりやすく説明しています。数学が苦手な方はまずはこちらのシリーズを読んでみると良いでしょう。

    ▶『坂田アキラの面白いほどわかる数学シリーズの使い方』の詳しい使い方こちら

    池田洋介先生のシリーズもイラストを使ってあるのでまったくの初学者でもわかりやすく解説してあります。数学2Bは苦手な学生が増える分野なので、苦手だ!と感じた瞬間に取り組むと良いでしょう。

    『数学ⅡBが面白いほどわかる』の詳しい使い方はこちら

    学校で一度勉強をした範囲だけど公式が丸暗記になっていたり、問題は一度覚えてやってみたけど何かできないな。。という方は『元気が出る数学1A2B』を勉強すると良いでしょう。上記2冊はわかりやすさでも随一の教材ですが、

    『元気が出る数学1A2B』の詳しい使い方はこちらから

    計算練習で高速化

    概念をつかみ、公式を理解できたら高速でその概念、公式を正確にかつ高速で使えるようにしていきます。このレベルまで来て役に立つのが計算練習になります。公式を実際に使って、四則演算、座標平面上の動きを理解していきながら、計算練習を積んでいきましょう。

    『合格る計算ⅠAⅡB/Ⅲ』の詳しい使い方はこちらから

    運用力×高速化

    各分野での計算練習を積んで四則演算、座標平面上での動きの意味がわかったのであれば、実際に問題を解いていきましょう。このレベルで大事なのは、問題文の内容を読んでいる際に思考停止せず、数学的な理解ができているかどうか?ということです。

    上記概念理解や計算練習ができてない段階で問題を解くことを行ってもあまり意味がありません。標準問題精講シリーズは他のシリーズは難しいですが、数学1Aに関してはレベル感も偏差値50~55程度の学生でも理解できかつ、解説もわかりやすく、どのように問題を解いたらよいのか?の着眼点も用意されています。

    『標準問題精講』の詳しい使い方はこちら

    『マセマ合格数学シリーズ』は着眼点、式の展開が丁寧なので独学でも問題なく勧めることができるでしょう。標準問題精講の2B3は難し目なので、合格シリーズがその代用になっていきます。入試レベルの典型的な問題が多いので、全ての問題に対して解法を自身の手で実際に最後まで導けるかどうか?という点が大事になってきます。

    『マセマ合格数学』の詳しい使い方はこちらから

    入試準備のレベルの基礎レベルとしては、『1対1対応の数学』までできていれば、基本的な数学の入試問題は対応できます。1対1対応の数学はこれまでの教材と比べると、式の展開もわかりづらい可能性があります。
    また、1対1対応の数学独特の表現があったりもするので、その理解をするのが初学者にとっては難しいです。ですが、これまでの『マセマシリーズ』や『標準問題精講』がただの暗記でなく理解ができている上での運用ができているのであれば、問題なく理解ができてきます。
    このレベルをクリアできれば入試問題の理解ができるようになるのも後もう少しです! 頑張りましょう!

    『1対1対応の数学』の詳しい使い方はこちらから

    できる人とできない人の差とは?

    問題を理解している時に数学ができる人はどのように理解しているのか?、数学ができてない人はどのように理解しているのか?という差をご説明します。勉強している最中にできない思考に陥らないようにしましょう。

    [su_box title=" 早稲田大学2016年度 理工学部 数学 大問Ⅱ(1)" style="glass"]

    sokei

    [/su_box]

    できない人はこう考える!

    ■図を書かない(イメージできない)

    数学ができない人ほど、図を書かない人が多いです。図形問題の時は必ず図を書いて考えましょう。実際に図を書いていくことで、直感的にこの図形はこの硬式を使えばいいんだなというのが見えてきます。

    できる人はこう考える!

    ■図を書く

    図を書くのは当然として、立体の問題を解くときに、断面図まで書けるかが1つの差をつけるポイントです。

    立体図断面図

    図1:全体図、図2:断面図

    このような断面図にすると、内接する球の半径は、二等辺三角形△PMNに内接する円の半径と同じであることがわかります(Nは線分CDの中点)。ここで、直線と円の接点において、接点と円の中心を結ぶ線分は直線に垂直になります。よって、球の半径をrとすると、△PMNの面積は

    \frac{1}{2} \times 2a \times r + \frac{1}{2} \times b \times r = \big(a+b\big) \times r

    で表されます。また、△PMNはMNを底辺とする二等辺三角形であるので、MNを底辺とした時、高さは

    \sqrt{a ^{2}+ b^{2}}

    になります。よって、△PMNの面積は

    \frac{1}{2} \times 2a \times \sqrt{a ^{2}+ b^{2}} = a \sqrt{a ^{2}+ b^{2}}

    のようになります。この二通りで表された△PMNの面積は等しいので、

     \big(a+b\big) r = a \sqrt{b^{2} - a^{2}}

    の式が成り立ちます。よって、球の半径は

    r = \frac{{a \sqrt{b^{2} - a^{2}} }}{a+b}

    で表されます。

    高校数学の流れを考える

    20160826_高校数学分野

    数学を苦手になる理由として、次から次へと新しい分野を行っていくために今何を行っているのか?、前の分野で使ったことは使えないのか?という錯覚に陥ってしまいます。なぜならば、学校で習う数学の順番というのは特に意味がなく、昔からこの順番で習うと決まっているから、現在の順番で学んでいるのです。それぞれの数学を学ぶ順番の意味合い、他の分野との関係性を理解していくことが大事です。

    特に理系の場合は、数3の微分積分が速く正確にできるようになるということが絶対条件としてあります。この分野までにいかに効率的に行っていくかどうかというのが高速理解のための必須条件となります。数学3の微分積分というのは計算自体は複雑で難しいですが、問題自体のパターンは少なく問題数さえこなせれば得意になることが可能です。得意になるためには問題数をこなしておくという前提条件があります。問題数をこなすためには、いかにして早い段階で数学3まで到達することができるのか?という点がポイントになります。

    当塾では、効率的に効率的に指導を行っていくために順番を改変して指導を行っています。数学1A→2Bという順番に勉強をしていっては数学ができない人にとっては様々な分野が入り交じるため成績を効率的に上げるためにはよくない順番です。

    また、各分野についての関係のイメージを持っておくことも大切です。
    例えば複素平面で考えてみましょう。下記の図を見てください。
    回転と拡大縮小という考え方はイメージがつきづらいですが、三角関数との関係やベクトル的なイメージを持っていると随分考えやすくなります。複素平面

    数学の勉強というのは、正しく勉強すれば誰でも成績を上げることが可能です。成績が上がらないということは何かしらの理由があります。数学の成績が上がらないで困っている方はこちらからご相談ください。

    文系数学の各々の分野の勉強の仕方

    理系数学と文系数学は範囲が異なります。範囲が異なるからといって簡単になるといわけではありません。
    ただ闇雲に勉強をしていても成績は上がりません。
    それぞれの分野でポイントを抑えて勉強を進めていくことが大事です。下記で、文系数学でどのように要点を抑えて勉強をしたら良いのかをお伝えしていきます。

    <二次関数>

    二次関数単体の問題は少ないのですが、最終的に最大最小の問題を二次関数で行うなど道具としての面が強いです。
    軸や範囲による場合分け、解の配置の二つが主にできれば差支えないので、完璧に使えるように演習しておきましょう。

    <不等式>

    単体で不等式が出題されるのは阪大など一部に限られますが、相加相乗平均の不等式、再配列不等式、シュバルツの不等式、チェビシェフの不等式くらいは当たっておいてほしいところです。
    もともと不等式の議論というのは、不等式の変形で同値性が崩れやすく、必要十分に気を配りながら解いていく必要があり、極めて難しいです。
    不等式は正負も大事になってくるのでよく理解しておきましょう。

    <場合の数>

    この分野は問題によっては小学生でも解けますし、これまでの蓄積の面が強いのですが、勉強のしかた次第で難しい問題でも解けないわけではありません。
    樹形図、表を駆使して漏れや重複なく数え上げられるように訓練しましょう。
    1000通り前後、例えばさいころ四つ投げた36×36=1296通りくらいは手計算で数え上げられるように鍛えましょう。

    また有名な対応づけは十分理解し、それを応用できるようにしておくと強いですし、センスが身に付きます。
    巧妙な解法は思いつかないから無駄という人がいますが、本番でエレガントな解法を思いつくには普段から巧妙な解法に触れていなければ、無理な話です。
    短時間で習得できる分野ではないので長いスパンを設けてじっくりと向き合ってあげてください。

    <確率>

    場合の数とやることは大差ないですが、場合の数と致命的に違うのは、同様に確からしいに気を配る必要があるということです。
    あとは条件付き確率ですが、ベン図を使うと理解しやすいので参考にしてみてください。期待値は範囲外ですが面白いので触れてみることをおススメします。
    確率漸化式が早慶をはじめ、難関大では多く出題されるので対策が必要です。
    すべての確率の和は1になることは忘れやすいのですが、これが鍵になる問題も多いので、頭の片隅にとどめておきましょう。

    <整数>

    この分野は好き嫌いが分かれますが、大学受験レベルだと、因数に注目する、不等式などで範囲を絞る、余り(mod)を考える、の三本柱を組み合わせて解けるので自分の頭でじっくり考えるのが大事です。
    ガウス記号やペル方程式、不定方程式など頻出問題には当たっておきましょう。
    大学ごとで問題の傾向が分かれるので過去問を見て、似たような問題に当たって鍛えておきましょう。
    文系でも早大商学部などは、難度の高い整数問題を出したりと油断できません。

    <代数、方程式>

    東大、京大などの難関大になると、時々難問で出るのですが、この分野は余裕があればやるくらいで良いと思います。
    結構知識の面も強いので、数学でやることなくなった人は趣味程度にやると楽しいです。
    チェビシェフの多項式、ラグランジュの補間公式、プラーマグプタの恒等式などは知っていれば便利なので、余裕があれば触れておくと面白いと思います。

    <三角関数>

    ラジアンの理解が甘いひとがときどきいて、sin1がどういうことを意味しているのか分からないというのは困るので定義をちゃんと理解しておきましょう。またこの分野も他の問題と融合で出るので、加法定理、和積は自由自在に行き来できるようにしましょう。倍角は3倍角くらいまで暗記しておくと便利です。
    また最大最小や領域などで最終的に三角関数の処理になることがしばしばあるので計算で間違えることのないように反復練習しておきましょう。

    <対数>

    文系だとlogの方程式を解いたり、不等式を扱うことが多いと思いますが、何桁か問われたりすることもたまにあるので底が何でもしっかりと扱えるようにしましょう。

    また対数の四則演算は計算演習が甘いと間違えことも多いので無意識でもできるレベルまで計算演習をしておきましょう。

    <数列>

    等差数列、等比数列の一般項や和を理解しているのはもちろんのこと、添え字にその都度気を配ることは大事です。
    また和をとる=差を作るということは極めて大事なので、ここでは詳しく説明しませんが、よく考えておきましょう。
    難関大では、偶奇で一般項が違かったり、ガウス記号がついていたりと面白い数列が出題されますが数列として特殊な知識を使うことはありません。
    整数の見方も大事にしながら理解を深めていきましょう。

    <ベクトル>

    平面、空間上の状態を表現するための新たな道具がベクトルです。
    慣れるまではなかなか掴みづらいのですが、大事になるのは一次独立、内積、単位ベクトルくらいなので、そこの概念はしっかりと確認しておきましょう。
    平面は解けるけど、空間は解けなくなる人がいますがやることは変わらないので怯えないでください。
    座標を置けばがんばれば解けますが、 計算量が大変になることが多いのでベクトルは大事です。

    <座標>

    座標の知識としては、点と直線の距離の公式、傾きはtanでとらえる、束の考え方、順手流・逆手流(通過範囲)が抑えられていれば十分でしょう。
    円の考察が絡む問題も少なくないので接線や距離関係などにも一通り当たっておきましょう。
    あとは軌跡を求めたり、最大最小の問題ができれば基本は大丈夫でしょう。
    また図形的考察やベクトルを駆使して計算量を抑えるなど上手に考えていけるとよいですね。
    逆に幾何やベクトルを座標で解くこともできるので計算力の増強は課題となるでしょう。

    <微積>

    数Ⅱの微積は問題のパターンが決まっていて、微分は関数の増減や、接線を求めるためのツール、積分は面積を求める道具としてしか考えていない人が多く、やり方だけ丸暗記している人も少なくないのではないでしょうか?
    過去のセンター試験でも極限から問われるなどイレギュラーもあるので、文系でもしっかり微積の意味、定義を考えておきましょう。

    また面積公式に頼っている人がいますが、1回は導出したうえで使いましょう。
    一般化して自分で面積公式を作ってみたりすると勉強になりますし、理解が深まります。
    また文系でも数Ⅲの範囲におけるある程度有名な積分はできたほうが有利です。

    <複素数>

    文系だと虚数解になることがあるくらいしか知らない人がいますが、複素数の四則演算に加えて、共役な複素数についても理解を深めておきましょう。
    課程が変わり、理系に複素平面が追加されるのにつられて、文系でも複素数の出題が増えていますから要注意分野と言えるでしょう。

    文系では、ベクトル、座標、積分の計算力があれば、有利なのでこの3分野は高速に処理できるようにしておきましょう。

    Q&A

    ここでは基礎的な数学部分について当塾に寄せられる質問をQ&A形式でお答えします。

    [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="質問1"]学校で皆がチャート式を使って勉強しています。僕も真似して使っているのですが、正直答えを見ても理解できず、ただ暗記しているような気がします。これでも大丈夫ですか[/speech_bubble]
    [speech_bubble type="ln-flat" subtype="R1" icon="platon1.jpg" name="プラトン先生"]暗記をしているだけでは、数学をその場しのぎの問題に対処することはできますが、圧倒的に得意にすることはできません。得意にするためには、概念を理解して上述したように数学を理解していく必要があります。特にチャート式は網羅系といわれるくらい問題数が多く、日本語での説明は皆無です。ある程度理解した段階で抜け漏れがないかの確認、問題数を稼ぐという意味合いで使用するのであればチャート式でも使いこなすことができます。ですが、数学が苦手でかつよく理解できてない段階でチャート式を使用するのはよくないです。情報量が多すぎます。[/speech_bubble]
    [speech_bubble type="ln-flat" subtype="L1" icon="seitom2.gif" name="質問2"]数学ができません。私は文系脳なのでしょうか? また数学的センスが無いのでしょうか?どれだけ学校でもらったワークを覚えてもテストの最中に忘れてしまったり、全然できません。このまえはテストの点数は一桁でした。現代文や社会は学年でもトップクラスでできるのですが、、、どうしたら良いのでしょうか?[/speech_bubble]
    [speech_bubble type="ln-flat" subtype="R1" icon="platon1.jpg" name="プラトン先生"]まずは落ち着いてください。数学にセンスは必要ありません。現在数学ができてないというのは様々な原因が考えられますが、ワークをやってもできてないということはワークの内容が自身の言葉で噛み砕けてない可能性があります。数学は数を扱う科目ですが、根幹は日本語で理解ができるかどうかという点に絞られてきます。数式を見て、数式で理解をするのではなくて、日本語でどういう意味でいっているのか?、座標でイメージするとどういう意味になるのか?という点を理解していきましょう。またそれができないというのであれば現在行っていることの前提条件が抜けている可能性があります。特に、中学は数学ができたけど高校になったら数学ができなくなった・・という子は、中学は覚えるだけで対応していたという場合が多いです。これでは数学はできるようにはなりません。中学レベルの内容から日本語で噛み砕けるように勉強してみてください。数学は正しく勉強すれば誰でもできる科目です。がんばって下さいね。[/speech_bubble]

    https://hiroacademia.jpn.com/blog/program/bunkeisugaku-benkyo-advanced/

2017年早稲田大学商学部|過去問徹底研究 大問1

2019.09.25

方針の立て方 (1) 絶対値問題の典型的解法,つまり,場合分けをして絶対値記号を外すことを試みる.その後は二次関数の最大最小問題と同じように,区間とグラフの位置関係で場合分けを行う.場合分けのパターンが多いが,対称性があるため⑤~⑦は実質的に計算しなくても答えは分かる.後はと直線を図示して面積を求め

  • …続きを読む
  • 方針の立て方
    (1)
    絶対値問題の典型的解法,つまり,場合分けをして絶対値記号を外すことを試みる.その後は二次関数の最大最小問題と同じように,区間とグラフの位置関係で場合分けを行う.場合分けのパターンが多いが,対称性があるため⑤~⑦は実質的に計算しなくても答えは分かる.後はf\left(x\right)と直線y=1を図示して面積を求めるのみ.

    (2)
    4次方程式の解析は難しいため,次数を下げることを考える.そこで「x=\alphaは代数方程式P\left(x\right)=0の解である」⇔「多項式P\left(x\right)x-\alphaを因数にもつ」という解の重要性質を利用すると考えよう.この重要性質を使えば,2次方程式の解析問題に帰着させられる.後は,実数解なのか虚数解なのかで場合分けをして考えればよい.

    (3)
    長さの問題であるため,座標系を導入すると考えやすくなると考える.「座標は長さの問題のときに強く,角度の問題のときには弱い」というのは覚えておこう.後は問題の状況を丁寧に書き下していけばよい.平方完成を用いた最小値問題は頻出問題なのでおさえておくこと.

    (4)
    {10}^{-k}2^n{10}^{100}3^{-n}のどちらが\mathrm{max}\left\{{10}^{-k}2^n,{10}^{100}3^{-n}\right\}の値になるかを考えよう(絶対値記号と同様に\mathrm{max}もそのままでは扱いにくいので外すことをまず考える).「全ての整数nに対して」となっているので,まずはkを固定してnのみを変数扱いして考えよう.{10}^{-k}2^n{10}^{100}3^{-n}はそれぞれ単調増加,単調減少であるため,最初は{10}^{-k}2^n<{10}^{100}3^{-n}となるだろうと分かる.そこで{10}^{-k}2^n={10}^{100}3^{-n}となるnを考える.後は十分条件を考え,そのあとで,必要性を考える.つまり,k\leqq63 \Rightarrow \mathrm{max}\left\{{10}^{-k}2^n,{10}^{100}3^{-n}\right\}\geqq1は言えるが,ではkをこれより大きくした場合はどうか,具体的にはk=64,65,66,\cdots\cdotsはどうかを考える必要があると考える.するとk=64で(*)を満たさないことが確認できるので,答えは63と分かる.

    解答例
    (1)
    ア:\frac{5}{3}
    (2)
    イ:-3
    ウ:-6
    (3)
    エ:\frac{6}{5}
    (4)
    オ:63

    解説
    (1)
    g\left(t\right)=\left|\left|t\right|-1\right|とおくと,

    ①のとき(x+1\leqq-1\Leftrightarrow x\leqq-2)
    f\left(x\right)=\frac{1}{2}\int_{x-1}^{x+1}\left(-t-1\right)dt=\frac{1}{2}\left[-\frac{1}{2}t^2-t\right]_{x-1}^{x+1}=-x-1
    ②のとき(-1\leqq x+1\leqq0\Leftrightarrow-2\leqq x\leqq-1)
    f\left(x\right)=\frac{1}{2}\int_{x-1}^{-1}\left(-t-1\right)dt+\frac{1}{2}\int_{-1}^{x+1}\left(t+1\right)dt=\frac{1}{2}\left[-\frac{1}{2}t^2-t\right]_{x-1}^{-1}+\frac{1}{2}\left[\frac{1}{2}t^2+t\right]_{-1}^{x+1}=\frac{1}{2}\left(x^2+2x+2\right)
    ③のとき(0\leqq x+1\leqq1\Leftrightarrow-1\leqq x\leqq0)
    f\left(x\right)=\frac{1}{2}\int_{x-1}^{-1}\left(-t-1\right)dt+\frac{1}{2}\int_{-1}^{0}\left(t+1\right)dt+\frac{1}{2}\int_{0}^{x+1}\left(-t+1\right)dt=\frac{1}{2}\left[-\frac{1}{2}t^2-t\right]_{x-1}^{-1}+\frac{1}{2}\left[\frac{1}{2}t^2+t\right]_{-1}^0+\frac{1}{2}\left[-\frac{1}{2}t^2+t\right]_0^{x+1}=\frac{1}{2}
    ④のとき(x+1=1\Leftrightarrow x=0)
    f\left(x\right)=\frac{1}{2}\int_{-1}^{0}\left(t+1\right)dt+\frac{1}{2}\int_{0}^{1}\left(-t+1\right)dt=\frac{1}{2}\left[\frac{1}{2}t^2+t\right]_{-1}^0+\frac{1}{2}\left[-\frac{1}{2}t^2+t\right]_0^1=\frac{1}{2}
    ⑤のとき(-1\leqq x -1\leqq 0 \Leftrightarrow 0\leqq x\leqq1)
    f\left(x\right)=\frac{1}{2}\int_{x-1}^{0}\left(t+1\right)dt+\frac{1}{2}\int_{0}^{1}\left(-t+1\right)dt+\frac{1}{2}\int_{1}^{x+1}\left(t-1\right)dt=\frac{1}{2}\left[\frac{1}{2}t^2+t\right]_{x-1}^0+\frac{1}{2}\left[-\frac{1}{2}t^2+t\right]_0^1+\frac{1}{2}\left[\frac{1}{2}t^2-t\right]_1^{x+1}=\frac{1}{2}
    ⑥のとき(0\leqq x-1\leqq1\Leftrightarrow1\leqq x\leqq2)
    f\left(x\right)=\frac{1}{2}\int_{x-1}^{1}\left(-t+1\right)dt+\frac{1}{2}\int_{1}^{x+1}\left(t-1\right)dt=\frac{1}{2}\left[-\frac{1}{2}t^2+t\right]_{x-1}^1+\frac{1}{2}\left[\frac{1}{2}t^2-t\right]_1^{x+1}=\frac{1}{2}\left(x^2-2x+2\right)
    ⑦のとき(1\leqq x-1\Leftrightarrow2\leqq x)
    f\left(x\right)=\frac{1}{2}\int_{x-1}^{x+1}\left(t-1\right)dt=\frac{1}{2}\left[\frac{1}{2}t^2-t\right]_{x-1}^{x+1}=x-1
    まとめると,
    f\left(x\right)=\begin{cases} -x-1 \left(x\leqq-2\right) \\ \frac{1}{2}\left(x^2+2x+2\right) \left(-2\leqq x\leqq-1\right) \\ \frac{1}{2} \left(-1\leqq x\leqq1\right) \\ \frac{1}{2}\left(x^2-2x+2\right) \left(1\leqq x\leqq2\right) \\ x-1 \left(2\leqq x\right) \end{cases}
    図示すると,

    よって,求める面積は,y軸での対称性より,
    2\left\{\frac{1}{2}\cdot1+\int_{1}^{2}\left\{1-\frac{1}{2}\left(x^2-2x+2\right)\right\}dx\right\}=1+2\left[-\frac{1}{6}x^3+\frac{1}{2}x^2\right]_1^2=\frac{5}{3}……(答)

    (2)
    実数解が1と3であることから,他の二解をx=\alpha,\betaとして,
    x^4+ax^3+bx^2+cx+3=\left(x-1\right)\left(x-3\right)\left(x-\alpha\right)\left(x-\beta\right)=x^4-\left(\alpha+\beta+4\right)x^3+\left(4\alpha+4\beta+\alpha\beta+3\right)x^2-\left(4\alpha\beta+3\alpha+3\beta\right)x+3\alpha\beta
    と書ける.係数比較すると,
    \begin{cases} a=-\left(\alpha+\beta+4\right) \\ b=4\alpha+4\beta+\alpha\beta+3 \\ c=-\left(4\alpha\beta+3\alpha+3\beta\right) \\ 3=3\alpha\beta \end{cases}\Leftrightarrow\begin{cases} \alpha+\beta=-a-4 \\ 4\alpha+4\beta=b-4 \\ 3\alpha+3\beta=-c-4 \\ \alpha\beta=1 \end{cases}
    となる.
    次に,2次方程式\left(x-\alpha\right)\left(x-\beta\right)=0\Leftrightarrow x^2-\left(\alpha+\beta\right)x+\alpha\beta=0について考える.この方程式の解が1か3,或いは虚数解であれば,4次方程式x^4+ax^3+bx^2+cx+3=0の実数解が1と3のみとなる.
    (Ⅰ)\alpha,\betaが実数のとき
    まず,判別式が非負となる必要があるので,\left(\alpha+\beta\right)^2-4\cdot1\cdot\alpha\beta\geqq0\Leftrightarrow\left(\alpha-\beta\right)^2\geqq 0が必要である.
    このもとで,2次方程式x^2-\left(\alpha+\beta\right)x+\alpha\beta=0の解が1か3のみとなるには,\left(\alpha,\beta\right)=\left(1,1\right),\left(1,3\right),\left(3,1\right),\left(3,3\right)なら必要十分(これらは全て\left(\alpha-\beta\right)^2\geqq0を満たす).この内,(*)式に抵触しないのは,\left(\alpha,\beta\right)=\left(1,1\right)のみである.このとき,(*)の第一式より,a=-6となる.
    (Ⅱ)\alpha,\betaが虚数のとき
    まず,判別式が負となる必要があるので,\left(\alpha+\beta\right)^2-4\cdot1\cdot\alpha\beta<0\Leftrightarrow\left(\alpha-\beta\right)^2<0が必要である.
    \alpha,\betaが虚数ならば,\alpha,\betaの値によらず,2次方程式x^2-\left(\alpha+\beta\right)x+\alpha\beta=0の解は虚数となる.
    (*)を利用すれば,\left(\alpha-\beta\right)^2<0\Leftrightarrow\left(\alpha+\beta\right)^2-4\alpha\beta<0\Leftrightarrow\left(-a-4\right)^2<4\Leftrightarrow-6<a<-2
    以上(Ⅰ)と(Ⅱ)より,4次方程式x^4+ax^3+bx^2+cx+3=0の実数解が1と3のみとなるaの範囲は-6\leqq a<-2である.
    aは整数なので,求める最大値は-3,最小値は-6である.……(答)

    (3)
    {\mathrm{AB}}^2+{\mathrm{BC}}^2={\mathrm{CA}}^2より,三角形\mathrm{ABC}\angle\mathrm{B}={90}^\circの直角三角形である.

    そこで,点\mathrm{B}を原点として,左図のように三角形\mathrm{ABC}xy平面上にのせる.
    内部の点\mathrm{O}の座標を左図のように\left(X,Y\right)とおく.点\mathrm{O}は三角形\mathrm{ABC}の内部の点であるので,
    \begin{cases} 0\leqq X \\ 0\leqq Y \\ Y\leqq-\frac{3}{4}X+3 \end{cases}……(*)
    を満たす必要がある.
    このもとで,
    {\mathrm{OP}}^2=X^2,{\mathrm{OQ}}^2=Y^2
    である.更に点と直線の距離の公式より,
    {\mathrm{OR}}^2=\frac{\left(3X+4Y-12\right)^2}{3^2+4^2}=\frac{9X^2+16Y^2-72X-96Y+24XY+144}{25}
    である.
    \therefore{\mathrm{OP}}^2+{\mathrm{OQ}}^2+{\mathrm{OR}}^2=X^2+Y^2+\frac{9X^2+16Y^2-72X-96Y+24XY+144}{25}=\frac{1}{25}\left\{34\left(X+\frac{6Y-18}{17}\right)^2+\frac{1}{17}\left(25Y-24\right)^2+72\right\}
    よって,
    \begin{cases} X+\frac{6Y-18}{17}=0 \\ 25Y-24=0 \end{cases}\Leftrightarrow\begin{cases} X=\frac{18}{25} \\ Y=\frac{24}{25} \end{cases}\mathrm{OP}^2+\mathrm{OQ}^2+\mathrm{OR}^2は最小となる.なお,\begin{cases} X=\frac{18}{25} \\ Y=\frac{24}{25} \end{cases}は(*)を満たす.
    このとき,
    \mathrm{OR}=\frac{\left|3\cdot\frac{18}{25}+4\cdot\frac{24}{25}-12\right|}{5}=\frac{6}{5}……(答)

    (4)
    kを固定して,{10}^{-k}2^n={10}^{100}3^{-n}となるnについて考えると,{10}^{-k}2^n={10}^{100}3^{-n}\Leftrightarrow6^n={10}^{100+k}より,n=\log_6{{10}^{100+k}}=\left(100+k\right)\log_6{10}=\frac{100+k}{\log_{10}{6}}=\frac{100+k}{\log_{10}{2}+\log_{10}{3}}
    {10}^{-k}2^nnについて単調増加であり,{10}^{100}3^{-n}は単調減少であるから,\mathrm{max}\left\{{10}^{-k}2^n,{10}^{100}3^{-n}\right\}の最小値は,{10}^{100}3^{-\frac{100+k}{\log_{10}{2}+\log_{10}{3}}}以上である.
    よって,\mathrm{max}\left\{{10}^{-k}2^n,{10}^{100}3^{-n}\right\}\geqq 1を満たすには,
    {10}^{100}3^{-\frac{100+k}{{\mathrm{log}}_{\mathrm{10}}{\mathrm{2}}\mathrm{+} {\mathrm{log}}_{\mathrm{10}}{\mathrm{3}}}}\geqq1\Leftrightarrow{10}^{100}\geqq\mathrm{3}^\frac{100+k}{{\mathrm{log}}_{\mathrm{10}}{\mathrm{2}}\mathrm{+} {\mathrm{log}}_{\mathrm{10}}{\mathrm{3}}}\Leftrightarrow100\geqq\frac{100+k}{{\mathrm{log}}_{\mathrm{10}}{\mathrm{2}}\mathrm{+} {\mathrm{log}}_{\mathrm{10}}{\mathrm{3}}}{\mathrm{log}}_{\mathrm{10}}{\mathrm{3}}\Leftrightarrow k\leqq100\frac{{\mathrm{log}}_{\mathrm{10}}{\mathrm{2}}}{{\mathrm{log}}_{\mathrm{10}}{\mathrm{3}}}
    であれば十分.
    100\frac{{\mathrm{log}}_{\mathrm{10}}{\mathrm{2}}}{{\mathrm{log}}_{\mathrm{10}}{\mathrm{3}}}>100\frac{0.301}{0.4772}=63.07,100\frac{{\mathrm{log}}_{\mathrm{10}}{\mathrm{2}}}{{\mathrm{log}}_{\mathrm{10}}{\mathrm{3}}}<100\frac{0.3011}{0.4771}=63.11kが整数であることから,
    k\leqq63であれば十分.
    ここで,k=64のときを考える.
    \frac{100+k}{\log_{10}{2}+\log_{10}{3}}=\frac{164}{\log_{10}{2}+\log_{10}{3}}であり\frac{164}{0.3011+0.4772}<\frac{164}{\log_{10}{2}+\log_{10}{3}}<\frac{164}{0.301+0.4771}\Leftrightarrow210.71\mathrm{\cdots\cdots}<\frac{164}{\log_{10}{2}+\log_{10}{3}}<210.76\mathrm{\cdots\cdots}より,\mathrm{max}\left\{{10}^{-64}2^n,{10}^{100}3^{-n}\right\}の最小値は,{10}^{100}3^{-210}{10}^{-64}2^{211}である.
    \log_{10}{\left({10}^{100}3^{-210}\right)}=100-210\log_{10}{3}<100-210\cdot0.4771=-0.191
    \log_{10}{\left({10}^{-64}2^{211}\right)}=-64+211\log_{10}{2}<-64+211\cdot0.3011=-0.4679
    より,{10}^{100}3^{-210}<{10}^{-0.191}<{10}^0=1,{10}^{-64}2^{211}<{10}^{-0.4679}<{10}^0=1であるから,k=64のとき条件(*)は満たされない.
    よって求めるkの最大値は63……(答)

【英語】女性を褒める言葉!Sexy、Hot、Smokingの使い分け

2019.09.24

今回は女性を褒める・女性の外見を表現する単語を紹介します。 女性の見た目を表現する言葉 まずは女性の見た目を表現する言葉を紹介します。 今回紹介するのは以下の単語です。 ・Hot ・Gorgeous ・Fine  ・Cute ・Sexy  ・Smoking Hotの使い方 まずはHotから見ていきま

  • …続きを読む
  • 今回は女性を褒める・女性の外見を表現する単語を紹介します。

    女性の見た目を表現する言葉

    まずは女性の見た目を表現する言葉を紹介します。

    今回紹介するのは以下の単語です。

    ・Hot ・Gorgeous ・Fine  ・Cute ・Sexy  ・Smoking

    Hotの使い方

    まずはHotから見ていきましょう。

    「熱い」という意味のHotですが、人に使われると「セクシー」という意味にもなります。

    女性だけではなく、男性にも使われる単語です。

    She’s so hot.

    彼女はすっげーセクシーだ。

    Sexyの使い方

    先日の小泉環境大臣のコメントでも話題のSexy(セクシー)。

    一緒に覚えておきたいのがSexy。

    HotとSexyはほとんど同じ意味ですが、Sexyの方が少し上品なニュアンスがあります。

    Hotは男友達同士で特定の女の子について表現するときに使われる感じですね。

    Gorgeousの使い方

    次に紹介するのはGorgeous。

    Gorgeousの意味はBeautifulと似ています。

    「ゴシップ・ガール」を見たことがありますか?

    「ゴシップ・ガール」の主人公セリーナは、まさにGorgeousです。

    Fineの使い方

    Fineはおなじみの言葉ですね。

    How are you? I’m fine.

    で有名ですが、外見に関して使うと「素敵な人」や「きれいな人」という意味になります。

    Prettyの使い方

    She looks pretty fine.

    彼女は本当にきれいだな。

    このPrettyは「かわいい」という意味ではありません。

    Prettyには副詞で「かなり、本当に」など強調の意味を持ちます。

    このPrettyの意味は超重要なので覚えておきましょう。

    Smokingの使い方

    SmokingもしくはSmoking hotはHotの上級表現です。

    Smokingには「煙草を吸っている」という意味がありますよね。

    しかし、ここではただの強調を表す単語として使われます。

    She’s smoking hot!

    She’s smoking.

    彼女はすっげーセクシーだな

    あまりきれいな言葉ではないので、女性に面と向かって言うのは止めた方がいいでしょう。

    女性の性格を表現する言葉

    せっかくなので女性の性格を表す単語も覚えておきましょう。

    今回紹介する単語は以下の通り。

    ・High maintenance ・Sporty ・Talkative ・Social

    High maintenanceの使い方

    High maintenanceは「世話がかかる、手間がかかる」人のことです。

    転じて、「面倒くさい人」という意味でも使われます。

    例えば、「私のことどれだけ愛しているの?」と毎日聞いてくる女性や、「○○記念日には絶対プレゼントちょうだい!」という女性です。

    She’s a high maintenance girl. It’s not easy to be with her.

    彼女は手間がかかる女の子だよ。一緒になるのは簡単じゃないぞ。

    High maintenanceの反対の意味を持つ言葉は、Low maintenanceですね。

    Low maintenanceの女性は、毎日Lineでメッセージを送らなくても、記念日を少々忘れても「大丈夫だよー」って言ってくれる女性です。

    Sportyの使い方

    Sportyはイメージがつきますよね。

    Sportyな女性は、スポーツが大好きな女性です。

    Talkativeの使い方

    Talkativeはおしゃべりが大好きな人のこと。

    意味は「話好きな、おしゃべりな」です。

    I’m so talkative.

    私はおしゃべりが大好きです。

    Socialの使い方

    Socialは社交的な人を表現するときに使用します。

    She is very social.

    彼女はとても社交的です。

     

    このような英単語は早稲田や慶應の入試に出ることはありませんが、

    英語が嫌いな人であってもこのような部分からはいっていくと興味がでますよね。

    当塾ではこのような英語に苦手な子供であっても様々なトピックから指導を行なっています。具体的なご入塾の相談についてはこちらからお話をしていただければと思います。

2018年早稲田大学商学部|過去問徹底研究 大問3

2019.09.24

方針の立て方 (1) 実際にを求めていくことで解答を得られる. (2) 前問での議論で,には周期性があることが分かる.更に,大事なのはとのなす角であることも分かるだろう(もし前問の議論だけでは方針を得られない場合には,他の具体的な組み合わせで考えてみると良い).そこで,とのなす角で場合分けをして議論

  • …続きを読む
  • 方針の立て方
    (1)
    実際に\mathrm{A}_nを求めていくことで解答を得られる.

    (2)
    前問での議論で,\mathrm{A}_nには周期性があることが分かる.更に,大事なのは\mathrm{O}\mathrm{A}_1\mathrm{O}\mathrm{A}_2のなす角であることも分かるだろう(もし前問の議論だけでは方針を得られない場合には,他の具体的な組み合わせで考えてみると良い).そこで,\mathrm{O}\mathrm{A}_1\mathrm{O}\mathrm{A}_2のなす角で場合分けをして議論していけば良いと判断する.

    解答例
    (1)

    (ⅰ)と(ⅱ)に従って\mathrm{A}_nを求めていくと,上図のようになる.
    上図より\mathrm{A}_{15}=\mathrm{P}_3であるから,求めるkk=3……(答)

    (2)
    \mathrm{A}_n=\mathrm{P}_kとして,前問の議論(\left(\mathrm{A}_1,\mathrm{A}_2\right)=\left(\mathrm{P}_1,\mathrm{P}_2\right)のとき)をまとめると,下表のようになる.

    n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 \cdots
    k 1 2 9 4 5 3 7 8 6 1 2 9 4 5 3 \cdots

    これより,kの値は1,2,9,4,5,3,7,8,6という周期9の並びを繰り返すことが分かる.
    \mathrm{A}_n=\mathrm{P}_1となるnが存在するため\left(\mathrm{A}_1,\mathrm{A}_2\right)=\left(\mathrm{P}_1,\mathrm{P}_2\right)は題意を満たさない.
    以下,\left(\mathrm{A}_1,\mathrm{A}_2\right)=\left(\mathrm{P}_i,\mathrm{P}_j\right)として,i<jのみを考える.更に\mathrm{O}\mathrm{P}_i\mathrm{O}\mathrm{P}_jのなす角の内,小さい方を\theta_{ij}と表す.
    (Ⅰ)\theta_{ij}=\frac{2\pi}{9}となるi,jのとき
    実際に\mathrm{A}_nを求めていくと,\left(\mathrm{A}_1,\mathrm{A}_2\right)=\left(\mathrm{P}_1,\mathrm{P}_2\right)のときのようにkの値は周期9の並びを繰り返し,kは1から9の全ての値をとる.よって,題意を満たさない.
    (Ⅱ)\theta_{ij}=\frac{4\pi}{9}となるi,jのとき
    実際に\mathrm{A}_nを求めていく.例えば\left(\mathrm{A}_1,\mathrm{A}_2\right)=\left(\mathrm{P}_1,\mathrm{P}_3\right)の場合,

    上図のようになる.
    \mathrm{A}_n=\mathrm{P}_kとしてまとめると,下表のようになる.

    n 1 2 3 4 5 6 7 8 9 10 11 12 \cdots
    k 1 3 8 7 9 5 4 6 2 1 3 8 \cdots

    これより,kの値は1,3,8,7,9,5,4,6,2という周期9の並びを繰り返すことが分かる.
    \mathrm{A}_n=\mathrm{P}_1となるnが存在するため\left(\mathrm{A}_1,\mathrm{A}_2\right)=\left(\mathrm{P}_1,\mathrm{P}_3\right)は題意を満たさない.また,他のi,jについても同様に題意を満たさない.
    (Ⅲ)\theta_{ij}=\frac{6\pi}{9}となるi,jのとき
    実際に\mathrm{A}_nを求めていく.例えば\left(\mathrm{A}_1,\mathrm{A}_2\right)=\left(\mathrm{P}_1,\mathrm{P}_4\right)の場合,

    上図のようになる.
    \mathrm{A}_n=\mathrm{P}_kとしてまとめると,下表のようになる.

    n 1 2 3 4 5 6 \cdots
    k 1 4 7 1 4 7 \cdots

    これより,kの値は1,4,7という周期3の並びを繰り返すことが分かる.
    \mathrm{A}_n=\mathrm{P}_1となるnが存在しないため\left(\mathrm{A}_1,\mathrm{A}_2\right)=\left(\mathrm{P}_1,\mathrm{P}_4\right)は題意を満たす.また,他のi,jについても同様に題意を満たす.
    \theta_{ij}=\frac{6\pi}{9}となるi,jの組み合わせは\left(i,j\right)=\left(2,5\right),\left(2,8\right),\left(3,6\right),\left(3,9\right),\left(5,8\right),\left(6,9\right)であり,これら6組は題意を満たす.
    (Ⅳ)\theta_{ij}=\frac{8\pi}{9}となるi,jのとき
    実際に\mathrm{A}_nを求めていく.例えば\left(\mathrm{A}_1,\mathrm{A}_2\right)=\left(\mathrm{P}_1,\mathrm{P}_5\right)の場合,

    n 1 2 3 4 5 6 7 8 9 10 11 12 \cdots
    k 1 5 9 4 8 3 7 2 6 1 5 9 \cdots

    これより,kの値は1,5,9,4,8,3,7,2,6という周期9の並びを繰り返すことが分かる.
    \mathrm{A}_n=\mathrm{P}_1となるnが存在するため\left(\mathrm{A}_1,\mathrm{A}_2\right)=\left(\mathrm{P}_1,\mathrm{P}_5\right)は題意を満たさない.また,他のi,jについても同様に題意を満たさない.
    以上,(Ⅰ)~(Ⅳ)より,題意を満たすi,jの組み合わせはi>jの範囲でも題意を満たすi,jの組み合わせは6組あるので,求める個数は6+6=12個……(答)

2018年早稲田大学商学部|過去問徹底研究 大問2

2019.09.24

方針の立て方 (1) 試しにを書き下すと解答が得られる.このときに分母を2で割った値が大事になることや,分母が奇数のときにはもう議論を続ける必要がないことが分かるだろう. (2) 前問の議論を一般化して考える.前問の議論で,分母が偶数であるときには,その分母の数字を2で割った値が大事になり,分母が奇

  • …続きを読む
  • 方針の立て方
    (1)
    試しにa_1\left(\frac{i}{12}\right),a_2\left(\frac{i}{12}\right),a_3\left(\frac{i}{12}\right),\cdots\cdotsを書き下すと解答が得られる.このときに分母を2で割った値が大事になることや,分母が奇数のときにはもう議論を続ける必要がないことが分かるだろう.

    (2)
    前問の議論を一般化して考える.前問の議論で,分母が偶数であるときには,その分母の数字を2で割った値が大事になり,分母が奇数になったときに議論が終了することから,xに素因数2が何個含まれているかがカギになると見抜きたい.後は前問のように場合分けして考えていくことを考えれば,解答が得られる.

    解答例
    (1)
    i=1,2,\cdots\cdots,11として,
    a_1\left(\frac{i}{12}\right)=\frac{i}{12}\neq0


    ここで,a_4\left(\frac{i}{12}\right)について考えると,

    となる.ここで,\frac{2i}{3},\frac{2\left(i-3\right)}{3},\frac{2\left(i-6\right)}{3},\frac{2\left(i-9\right)}{3}は全て整数とはならない.一方で\left[\frac{2i}{3}\right],\left[\frac{2\left(i-3\right)}{3}\right],\left[\frac{2\left(i-6\right)}{3}\right],\left[\frac{2\left(i-9\right)}{3}\right]は全て整数である.よって,\frac{2i}{3}-\left[\frac{2i}{3}\right],\frac{2\left(i-3\right)}{3}-\left[\frac{2\left(i-3\right)}{3}\right],\frac{2\left(i-6\right)}{3}-\left[\frac{2\left(i-6\right)}{3}\right],\frac{2\left(i-9\right)}{3}-\left[\frac{2\left(i-9\right)}{3}\right]は全て0とはならない.
    同様に,a_5\left(\frac{i}{12}\right),a_6\left(\frac{i}{12}\right),\cdots\cdotsでもi=1,2,4,5,7,8,10,11のときは0とはならない.
    よって,i=3,6,9のみが(*)を満たす.
    \therefore S_{12}=\left\{\frac{1}{4},\frac{1}{2},\frac{3}{4}\right\}……(答)

    (2)
    前問の議論を応用すれば,xが有理数で分母が偶数(ある自然数mを用いて2mと表す)であるときa_2\left(x\right)i=mで0となる.その後はi=1,2,\cdots\cdots,m-1i=m+1,m+2,\cdots\cdots,n-1で場合分けして同様の議論が繰り返せる.この議論は,a_k\left(x\right)の分母が奇数となるまで続く.
    よって,xが有理数で分母を素因数分解したときに2^l(lは0以上の整数)を含む場合,a_2\left(x\right)=0となるiは1個あり,a_3\left(x\right)=0となるiは(a_2\left(x\right)=0となるiを除くと)2個あり,a_4\left(x\right)=0となるiは(a_3\left(x\right)=0となるiを除くと)4個あり,……,a_{l+1}\left(x\right)=0となるiは(a_l\left(x\right)=0となるiを除くと)2^{l-1}個ある.なお,a_{l+2}\left(x\right)=0となるia_{l+1}\left(x\right)=0となるiを除くと存在しない.
    よって,(*)を満たすi\sum_{k=0}^{k=l-1}2^k=2^l-1個存在する.
    そして(*)を満たす有理数は,\frac{i}{2^l}(i=1,2,\cdots\cdots,2^l-1)である.
    よって,Tの要素の個数は,1から2018の中で素因数に2を最も多く含むもののを考え,その数の素因数2の個数をm個とすれば,2^m-1個である.
    2^m\leqq2018を満たす最大のmm=10である.
    よって求める個数は,
    2^{10}-1=1023個……(答)

2018年早稲田大学商学部|過去問徹底研究 大問1

2019.09.24

方針の立て方 (1) まずは,扱いにくい絶対値記号を外す.の正負で場合分けを行えばよい. 絶対値を外せば,方程式は1次方程式になる.方程式のまま解析しても良いが,「方程式の解に関する解析は方程式の左辺(0でない方)を関数でおいて軸との交点で考える」という王道手段を本解では採用した. (2) 整数問題

  • …続きを読む
  • 方針の立て方
    (1)
    まずは,扱いにくい絶対値記号を外す.x-1の正負で場合分けを行えばよい.
    絶対値を外せば,方程式は1次方程式になる.方程式のまま解析しても良いが,「方程式の解に関する解析は方程式の左辺(0でない方)を関数でおいてx軸との交点で考える」という王道手段を本解では採用した.

    (2)
    整数問題の典型問題である.素数の累乗のため約数に持ち込む(積の形に持ち込む)と都合が良いと考え因数分解を行う.

    (3)
    P\left(x\right)が整式である」という情報をどう盛り込むかを考える.できることならP\left(x\right)を具体的に書き下したいが,その際に次数が分かっていないのがネックになるため,まずは次数を求めることに専念する.次数が求まれば,後は具体的にP\left(x\right)を書き下して,計算するのみ.

    (4)
    このような抽象的な関数の問題では,数式の意味を考えると良い.例えばf\left(-x\right)=-f\left(x\right)は「引数の符号を反転させると,関数値の符号が反転する」ことを意味していると考える.すると,1-xの符号を反転させれば,f\left(1+x\right)=f\left(1-x\right)は引数xの係数の符号が揃い,f\left(x+m\right)=f\left(x\right)に近づくと考える.
    次にf\left(x+1\right)=-f\left(x-1\right)は「引数が2上下すると,関数値の符号が反転する」ことを意味していると考える.すると「引数が4上下すると,関数値の符号は同じになる(2回反転して元に戻る)」と分かり,答えにたどり着く.解答では,この当たりを厳密に数式で処理しているが,本番では途中経過を求められないで,このような定性的な議論で十分だろう.

    解答例
    (1)ア:\frac{-1+\sqrt{13}}{2}
    (2)イ:\left(17,2,6\right)
    (3)ウ:3x
    (4)エ:4

    解説
    (1)
    x\geqq1のとき
    方程式は,
    \left(1-a\right)x+k^2+ak-3=0
    となる.ここで,f_1\left(x\right)=\left(1-a\right)x+k^2+ak-3とおく.
    x<1のとき
    方程式は,
    \left(-1-a\right)x+k^2+ak-1=0
    となる.ここで,f_2\left(x\right)=\left(-1-a\right)x+k^2+ak-1とおく.
    さらに,
    g\left(x\right)=\begin{cases} f_1\left(x\right)\ \left(x\geqq1\right) \\ f_2\left(x\right)\ \left(x<1\right) \end{cases}
    とおく.ここで,g\left(x\right)x=1で連続であることに注意.
    (Ⅰ)\begin{cases} 0<1-a \\ 0<-1-a \end{cases}\Leftrightarrow a<-1のとき
    関数y=f_1\left(x\right)y=f_2\left(x\right)も傾き正の一次関数であるから,g\left(x\right)-\inftyから+\inftyの値を取り得る.よって,kの値によらずg\left(x\right)=0となるxは存在する.
    (Ⅱ)\begin{cases} 0>1-a \\ 0>-1-a \end{cases}\Leftrightarrow 1<aのとき
    関数y=f_1\left(x\right)y=f_2\left(x\right)も傾き負の一次関数であるから,g\left(x\right)-\inftyから+\inftyの値を取り得る.よって,kの値によらずg\left(x\right)=0となるxは存在する.
    (Ⅲ)\begin{cases} 0\leqq1-a \\ 0\geqq-1-a \end{cases}\Leftrightarrow-1\leqq a\leqq1のとき
    関数y=f_1\left(x\right)は傾き0以上の一次関数で,関数y=f_2\left(x\right)は傾き0以下の一次関数である.よって,g\left(x\right)の最小値はx=1のときでg\left(1\right)=k^2+ak-2-aである.なお最大値は存在しない.
    よってaの値に依らず解が存在するには全てのaに対してg\left(1\right)\leqq0であれば必要十分.
    g\left(1\right)\leqq0\Leftrightarrow k^2+ak-2-a\leqq0\Leftrightarrow\left(k-1\right)a+k^2-2\leqq0……(*)
    -1\leqq a\leqq1に気を付けると,

    となるから,(*)の条件式は,

    となる.よって求める最大値は\frac{-1+\sqrt{13}}{2}……(答)

    (2)
    225=3^2\cdot5^2={15}^2より,
    a^2=b^n+225\Leftrightarrow\left(a-15\right)\left(a+15\right)=b^n
    となる.この式より,a-15a+15b^nの約数となることが分かる.また,bは素数であることから,b^nの約数は1,b,b^2,\cdots\cdots,b^nである.よって,
    \begin{cases} a-15=b^k \\ a+15=b^{n-k} \end{cases}
    と書ける.ここで,kは0以上の整数であり,a-15<a+15よりk<n-k\Leftrightarrow2k<nを満たす.
    両辺の差を取ると,
    30=b^{n-k}-b^k=b^k\left(b^{n-2k}-1\right)
    となる.この式より,b^kb^{n-2k}-1は30の約数となることが分かるが,bが素数であることを加味すれば,b^kb^{n-2k}-1の考えられる組み合わせは
    \left(b^k,b^{n-2k}-1\right)=\left(1,30\right),\left(2,15\right),\left(3,10\right),\left(5,6\right)
    の4つ.この内,整合性が取れるのは,\left(b^k,b^{n-2k}-1\right)=\left(2,15\right)のみであり,解くと,
    \left(b,k,n\right)=\left(2,1,6\right)
    となる.これをa-15=b^kに代入すれば,a=17と分かる.
    \therefore\left(a,b,n\right)=\left(17,2,6\right)……(答)

    (3)
    P\left(x\right)n次の多項式(nは自然数)とすると,(左辺)=\int_{0}^{x}\left\{P\left(t\right)\right\}^mdtnm+1次の多項式となる.
    一方で,(右辺)=P\left(x^3\right)-P\left(0\right)3nの多項式である.
    左辺と右辺の次数は等しいため,
    nm+1=3n\Leftrightarrow n=\frac{1}{3-m}
    となる.nが自然数であるため\frac{1}{3-m}も自然数であり,m=2であれば必要十分.また,そのときn=1である.
    よって,P\left(x\right)は1次多項式であるから,0でない実数aと実数bを用いて,
    P\left(x\right)=ax+b
    と表せる.
    \int_{0}^{x}\left\{P\left(t\right)\right\}^mdt=\int_{0}^{x}\left\{at+b\right\}^2dt=\left[\frac{1}{3}a^2t^3+abt^2+b^2t\right]_0^x=\frac{1}{3}a^2x^3+abx^2+b^2x P\left(x^3\right)-P\left(0\right)=\left(ax^3+b\right)-b=ax^3
    より,両辺の係数比較をすると,a\neq0に注意して,
    \begin{cases} \frac{1}{3}a^2=a \\ ab=0 \\ b^2=0 \end{cases}\Leftrightarrow\begin{cases} a=3 \\ b=0 \end{cases}
    \therefore P\left(x\right)=3x

    (4)
    f\left(-x\right)=-f\left(x\right)\Leftrightarrow f\left(x\right)=-f\left(-x\right)で,x1-xを代入すると,
    f\left(1-x\right)=-f\left(x-1\right)
    が言える.
    \therefore f\left(1+x\right)=f\left(1-x\right)\Leftrightarrow f\left(x+1\right)=-f\left(x-1\right)……(*)
    更に,(*)でxx-2を代入すると,
    f\left(x-1\right)=-f\left(x-3\right)
    となるから,(*)の右辺に代入すると
    f\left(x+1\right)=f\left(x-3\right)
    さらに,この式でxx+3を代入すると,
    f\left(x+4\right)=f\left(x\right)
    となる.よって,求めるmの最小値は4……(答)

2016年慶應義塾大学環境情報|過去問徹底研究 大問6

2019.09.23

方針の立て方 (1)(2)ともに,ケース1~4のどのケースが適用されるのかが直観的に分からないため,「仮にこのケースが適用されるなら」と考えて,ケース1から順番に代入していく.このような既存の分野にとらわれない新傾向の出題はSFCや商学部で多く見られるが,これら新傾向問題の攻略法は地道に片っ端から試

  • …続きを読む
  • 方針の立て方
    (1)(2)ともに,ケース1~4のどのケースが適用されるのかが直観的に分からないため,「仮にこのケースが適用されるなら」と考えて,ケース1から順番に代入していく.このような既存の分野にとらわれない新傾向の出題はSFCや商学部で多く見られるが,これら新傾向問題の攻略法は地道に片っ端から試してみることにある.そのまま代入したり試行したりすることで答えまで至る今回のような問題もあれば,途中で規則性に気付いて解答する問題もある.どちらにせよ,分からなかったら試してみるということを心がけよう.

    解答例
    (85)(86)(87)……060
    (88)(89)(90)……180
    (91)(92)(93)……150
    (94)(95)(96)……200
    (97)(98)(99)……035
    (100)(101)(102)……035
    (103)(104)(105)……050
    (106)(107)(108)……140

    解説
    (1)
    Aの範囲((85)~(90)について)
    ケース1が適用されるなら,A\leqq\frac{2}{2}\cdot60=60が必要で,X_1=30となるには,A=60が必要.
    ケース2が適用されるなら,k=1となるから,\frac{1}{2}\cdot240-\frac{1}{2}\cdot120\leqq A\leqq\frac{1}{2}\cdot240-\frac{1}{2}\cdot0\Leftrightarrow60\leqq A\leqq120のときX_1=\frac{1}{2}B_1=30となるため,60\leqq A\leqq120が必要となる.
    ケース3が適用されるなら,k=1となるから,\frac{1}{2}\cdot240+\frac{1}{2}\cdot0\leqq A\leqq\frac{1}{2}\cdot240+\frac{1}{2}\cdot120\Leftrightarrow120\leqq A\leqq180のときX_1=\frac{1}{2}B_1=30となるため,120\leqq A\leqq180が必要となる.
    ケース4が適用されるなら,240-\frac{2}{2}\cdot60\leqq A\Leftrightarrow180\leqq AのときX_1=60-\frac{1}{2}\left(240-A\right)となるため,X_1=30となるにはA=180が必要となる.
    以上より,60\leqq A\leqq180……(答)
    X_2X_1の4倍となるとき((91)~(96)について)
    ケース1が適用されるなら,X_1=X_2=\frac{A}{2}より,満たすAは存在しない.
    ケース2が適用されるなら,k=1であり,60\leqq A\leqq120のもとで,X_1=30,X_2=\frac{1}{2}\cdot60+\frac{1}{1}\cdot\left(A-\frac{1}{2}\cdot240+\frac{1}{2}\cdot120\right)=-30+Aより,X_2=4X_1となるAは存在しない(A=150となり,60\leqq A\leqq120に抵触).
    ケース3が適用されるなら,k=1であり,120\leqq A\leqq180のもとで,X_1=30,X_2=180-\frac{1}{2}\cdot60-\frac{1}{1}\cdot\left(\frac{1}{2}\cdot240+\frac{1}{2}\cdot120-A\right)=-30+Aより,X_2=4X_1となるAA=150
    ケース4が適用されるなら,180\leqq Aのもとで,X_1=\frac{1}{2}A-60,X_2=180-\frac{1}{2}\left(240-A\right)=60+\frac{1}{2}Aより,X_2=4X_1となるAA=200
    以上より,A=150,200……(答)

    (2)
    ケース1が適用されるなら,A\leqq\frac{3}{2}\cdot60\Leftrightarrow A\leqq90が必要だが,A=100A=220もこの範囲にない.
    ケース2が適用されるなら,

    が必要となる.A=10090\leqq A\leqq120の範囲内であるから,k=1とした式が成り立ち,
    X_1=30,X_2=12⋅60+12100-12⋅330+1230+120=35,X3=35となる.……(答)
    ケース3が適用されるなら,k=1に対して\frac{1}{2}\cdot330+\frac{1}{2}\cdot90\leqq A\leqq\frac{1}{2}\cdot330+\frac{1}{2}\left(30+120\right)\Leftrightarrow210\leqq A\leqq240が必要となる.A=220210\leqq A\leqq240の範囲内であるから,k=1とした式が成り立ち,
    X_1=30,X_2=90-\frac{1}{2}\cdot60-\frac{1}{2}\left\{\frac{1}{2}\cdot330+\frac{1}{2}\left(30+120\right)-220\right\}=50,X_3=180-\frac{1}{2}\cdot60-\frac{1}{2}\left\{\frac{1}{2}\cdot330+\frac{1}{2}\left(30+120\right)-220\right\}=140……(答)

2016年慶応義塾大学環境情報|過去問徹底研究 大問5

2019.09.23

方針の立て方 ガウス記号()の問題はとにかく書き出してみること.書き出していく中で規則性をつかむことができる.(1)の場合にはが平方数となる前後での値が1増えることが分かる.そのため,が平方数となる箇所ごとに数列を区切って,群数列としてみると良い(特にを求めるときに,分母が同じものに着目することが重

  • …続きを読む
  • 方針の立て方
    ガウス記号(\left[\qquad\right])の問題はとにかく書き出してみること.書き出していく中で規則性をつかむことができる.(1)の場合にはnが平方数となる前後で\left[\sqrt n\right]の値が1増えることが分かる.そのため,nが平方数となる箇所ごとに数列を区切って,群数列としてみると良い(特にS_{99}を求めるときに,分母が同じものに着目することが重要だと気付くだろう).同様に,(2)の場合にはnが立方数となる箇所ごとに数列を区切る.

    解答例
    (70)(71)……27
    (72)(73)……80
    (74)(75)(76)……714
    (77)(78)……46
    (79)(80)……20
    (81)(82)(83)(84)……2178

    解説
    (1)
    a_nが整数となるもの((70)と(71)について)
    分母の\left[\sqrt n\right]の値で場合分けする.
    \left[\sqrt n\right]=1となるのは,1\leqq n\leqq3であり,a_nが整数となるのは,n=1,2,3で3個.
    \left[\sqrt n\right]=2となるのは,4\leqq n\leqq8であり,a_nが整数となるのは,n=4,6,8で3個.
    \left[\sqrt n\right]=3となるのは,9\leqq n\leqq15であり,a_nが整数となるのは,n=9,12,15で3個.
    \left[\sqrt n\right]=4となるのは,16\leqq n\leqq24であり,a_nが整数となるのは,n=16,20,24で3個.
    \left[\sqrt n\right]=5となるのは,25\leqq n\leqq35であり,a_nが整数となるのは,n=25,30,35で3個.
    \left[\sqrt n\right]=6となるのは,36\leqq n\leqq48であり,a_nが整数となるのは,n=36,42,48で3個.
    \left[\sqrt n\right]=7となるのは,49\leqq n\leqq63であり,a_nが整数となるのは,n=49,56,63で3個.
    \left[\sqrt n\right]=8となるのは,64\leqq n\leqq80であり,a_nが整数となるのは,n=64,72,80で3個.
    \left[\sqrt n\right]=9となるのは,81\leqq n\leqq99であり,a_nが整数となるのは,n=81,90,99で3個.
    以上より,求める個数は,3\times9=27個……(答)

    ○最初にa_n=10となるn((72)と(73)について)
    分母の\left[\sqrt n\right]の値で場合分けする.
    \left[\sqrt n\right]=1となる項の中で最大の項は,n=3のときで,a_3=3
    \left[\sqrt n\right]=2となる項の中で最大の項は,n=8のときで,a_8=4
    \left[\sqrt n\right]=3となる項の中で最大の項は,n=15のときで,a_{15}=5
    \left[\sqrt n\right]=4となる項の中で最大の項は,n=24のときで,a_{24}=6
    \left[\sqrt n\right]=5となる項の中で最大の項は,n=35のときで,a_{35}=7
    \left[\sqrt n\right]=6となる項の中で最大の項は,n=48のときで,a_{48}=8
    \left[\sqrt n\right]=7となる項の中で最大の項は,n=63のときで,a_{63}=9
    \left[\sqrt n\right]=8となる項の中で最大の項は,n=80のときで,a_{80}=10
    よって,最初にa_n=10となるnn=80……(答)

    S_{99}((74)~(76)について)
    分母の\left[\sqrt n\right]の値が同じ項をまとめて考える(群数列の考え方).
    S_{99}=\sum_{i=1}^{99}a_i=\frac{1+2+3}{1}+\frac{4+5+\cdots\cdots+8}{2}+\frac{9+10+\cdots\cdots+15}{3}+\cdots\cdots+\frac{81+82+\cdots\cdots+99}{9}=\sum_{n=1}^{9}\frac{\sum_{m=n^2}^{\left(n+1\right)^2-1}m}{n}=\sum_{n=1}^{9}\frac{\frac{1}{2}\left(2n+1\right)\left\{n^2+\left(n+1\right)^2-1\right\}}{n}=\sum_{n=1}^{9}\left(2n^2+3n+1\right)=714……(答)

    (2)
    b_nが整数となるもの((77)と(78)について)
    分母の\left[\sqrt[3]{n}\right]の値で場合分けする.
    \left[\sqrt[3]{n}\right]=1となるのは,1\leqq n\leqq7であり,a_nが整数となるのは,n=1,2,3,\cdots\cdots,7で7個.
    \left[\sqrt[3]{n}\right]=2となるのは,8\leqq n\leqq26であり,a_nが整数となるのは,n=8,10,12,\cdots\cdots,26で10個.
    \left[\sqrt[3]{n}\right]=3となるのは,27\leqq n\leqq63であり,a_nが整数となるのは,n=27,30,33,\cdots\cdots,63で13個.
    \left[\sqrt[3]{n}\right]=4となるのは,64\leqq n\leqq124であり,a_nが整数となるのは,n=64,68,72,\cdots\cdots,124で16個.
    以上より,求める個数は,7+10+13+16=46個……(答)

    ○最初にb_n=10となるn((79)と(80)について)
    分母の\left[\sqrt[3]{n}\right]の値で場合分けする.
    \left[\sqrt[3]{n}\right]=1となる項の中で最大の項は,n=7のときで,b_7=7
    \left[\sqrt[3]{n}\right]=2となる項の中で最大の項は,n=26のときで,b_{26}=13
    よって求めるn\left[\sqrt[3]{n}\right]=2となる項の中にある.分母が2のため,分子が20になる項が該当する.そしてその項はb_{20}である.
    よって,最初にb_n=10となるnn=20……(答)

    T_{124}((81)~(84)について)
    分母の\left[\sqrt[3]{n}\right]の値が同じ項をまとめて考える(群数列の考え方).
    T_{124}=\sum_{i=1}^{124}b_i=\frac{1+2+\cdots\cdots+7}{1}+\frac{8+9+\cdots\cdots+26}{2}+\frac{27+28+\cdots\cdots+63}{3}+\frac{64+65+\cdots\cdots+124}{4}=\sum_{n=1}^{4}\frac{\sum_{m=n^3}^{\left(n+1\right)^3-1}m}{n}=\sum_{n=1}^{4}\frac{\frac{1}{2}\left(3n^2+3n+1\right)\left\{n^3+\left(n+1\right)^3-1\right\}}{n}=\sum_{n=1}^{4}{\frac{1}{2}\left(3n^2+3n+1\right)\left(2n^2+3n+3\right)}=\frac{1}{2}\cdot7\cdot8+\frac{1}{2}\cdot19\cdot17+\frac{1}{2}\cdot37\cdot30+\frac{1}{2}\cdot61\cdot47=2178……(答)

英検準一級対策!早慶入試でも利用できるその攻略法とは

2019.09.23

4技能入試に向けて外部試験導入が進んでいる昨今、大学入試において英検準1級を取得するメリットは非常に大きいです。 2級に比べるとやや難しくなりますが受験勉強の範疇で十分対応が可能で、TOEICなどの他の外部試験と比べると比較的安価で対策もしやすいのでおすすめの資格と言えるでしょう。  実際の過去問は

  • …続きを読む
  • 4技能入試に向けて外部試験導入が進んでいる昨今、大学入試において英検準1級を取得するメリットは非常に大きいです。 [toc]

    2級に比べるとやや難しくなりますが受験勉強の範疇で十分対応が可能で、TOEICなどの他の外部試験と比べると比較的安価で対策もしやすいのでおすすめの資格と言えるでしょう。

     実際の過去問は公式サイトで最新3回分が無料で公開されています。
    マイナーチェンジされることもありますが、大枠はほとんど変わりませんので最新の問題(2018年第1回)をもとに傾向と対策をみていきましょう。

    まず試験全体の話ですが、現在はリーディング・リスニング・ライティングの問題を解く1次試験と試験官と対面で英語を話す2次試験に分かれています。
    将来的に1日で試験を行うようになる可能性はありますが、しばらくは現行の試験形態のままで行われるでしょう。
    まずは筆記試験について対策をお伝えしていきます。

    筆記試験問題形式

    Reading 90分

    第1問 語彙25問、第2問 長文穴埋め2題、第3問 長文3題、第4問 英作文(120-150words)

    Listening 約30分

    Part1 Dialogues、Part2 Passages、Part3 Real-Life

    リーディングセクションについて

    日本の既存の教育を受けている人であれば、一番得意となりうるセクションです。
    大学受験で行っている長文対策で対応できる部分もありますが、できない部分もあります。下記でどのように対策を行ったら良いのかを記載していきます。

    第1問 語彙

    単に準1級に受かるだけであればこのセクションで高得点を取る必要はありません。
    ただし準1級の長文パートは2級よりも語彙力を要求されますので最低限の準備はしておく必要があります。

    具体的には単語王レベルの語彙は絶対に必要です。
    何はともあれまずは単語王をしっかり終わらせましょう。
    いきなり英検準1級用の単語帳に手を出しても良いのですが、単語王レベルで不安が残る状態だとスムーズにいかない場合があるのでまずは今使用している単語帳(単語王でなくてもよい)を仕上げるのがよいでしょう。

    単語王の効果的な使い方はこちら

    第2問 長文穴埋め

    長文とは言っても3段落程度の短い文章ですので語数は多くありません。
    内容も平易で問題も答えやすいものばかりとなっています。

    早慶レベルの問題と比べればはるかに解きやすく早慶を狙う受験生であれば満点を狙ってほしいセクションです。
    ここでの失点が目立つようであれば一度2級レベルの問題に戻るといいでしょう。

    第3問 長文

    標準的な長文問題を3題解くことになります。
    内訳としては3パラグラフの文章が2題と4パラグラフの文章が1題で
    設問数はパラグラフ数と同一となっています。

    つまり、基本的には1つのパラグラフに1つの問題が対応しているわけです。

    問題を解くうえでは1つのパラグラフを読み終わったらそれに対応した問題を解くと読み返し無しでスムーズに解けるでしょう。
    選択肢に意地悪なものがほとんどないので、普段の受験勉強の延長として過去問に取り組むだけで十分な対策になります。

    さらにリーディングの具体的な対策、勉強法、合格点、目標点についてはこちらでも解説しています。

    英検準1級リーディング対策!早稲田入試でも利用できるその攻略法とは

    ライティングセクション

    英検準1級の英作文では120〜150語程度の英作文が1題課されます。
    話題は社会的なものが多いですが、ヒントとして4つのポイントが提示されておりその中から2つを選んで書くことになります。
    理由づけは基本的にそのポイントに従ってやればよく、問題形式は毎回変わらないので
    テンプレートを作成して覚えておけば語数に対してやることは意外と少ないです。

    さらにライティングの具体的な対策、勉強法、合格点、目標点についてはこちらでも解説しています。

    英検準1級ライティング対策!早稲田入試でも利用できるその攻略法とは

    リスニングセクションについて

    英検に限らずこうしたリスニングの試験で得点を伸ばす一番の方法は先読みです。
    先読みとは放送前に選択肢に目を通しておくことを言います。
    特に
    英検は時間に余裕のある試験ですので、
    合格レベルの学力があれば必ず時間は余ります

    順調にいけば10分程度余って見直しに2~3分、
    残りの7~8分を先読みの時間に当てることができます。

    余裕があれば余白に何を聞かれそうかメモしておいてもいいでしょう。

    ただ筆記で予想外に苦戦するということも十分考えられますので、
    その場合は最低限Part3のSituationとQuestionだけでも目を通しましょう。
    というのもこのパートはSituationが文章で説明されているのでpart1とpart2に比べて目を通すのに時間がかかるからです。

    また特にPart1については放送が始まる前に長めの指示(基本的に毎回同じ内容)が流れるのでその時間中にも先読みを行うことができます。
    先読みをやるかどうかで取り組みやすさが段違いに変わりますのでこれは必ず行うようにしてください。

    ただし多少慣れが必要な部分もあるので、過去問に取り組む際は時間を測ってフルセットで行い、自分がどれくらい先読みの時間を確保できるのかをしっかり把握しておきましょう。

    また言うまでもないですが、解けなかった問題に執着するのは絶対にやめましょう。
    マークを終えたら意識を切り替えて次の問題に取り組むのが大事です。

    さらにリスニングの具体的な対策、勉強法、合格点、目標点についてはこちらでも解説しています。

    英検準1級リスニング対策!早稲田入試でも利用できるその攻略法とは

    スピーキングセクションについて

    毎回1次試験合格者の約8割以上は2次試験合格を果たしています。
    ですが、それは1次試験の対策をしっかりしている人であれば、2次試験の対策もしっかり行っているからうかるわけであっても、何も対策をせずうかるということはありえません。
    試験当日は、自信を持って答えられるように準備を怠らずに勉強をしてください。

    実際の問題構成は以下の通りです。

    入室&挨拶+スモールトーク

    イラストのナレーション 1題(準備時間1分)

    イラストに関する質問2題(2問目はカードを伏せる)

    社会的な質問2題

    英検の公式サイトのサンプル問題では、受動喫煙問題・日本の犯罪率・政府の決定に対する世論の役割が出題されています。こうしたテーマを対して準備なしで語るのは一見難しいように思えるかもしれません。

    しかし、これらのテーマは多くが英作文の対策をしっかりやっていれば問題なく応答できます
    もちろん淀みなくスラスラ喋るということになれば難しいでしょうが、
    多少言い淀んでも大きく減点されることはありません。相手の質問を聞いて少し考え、ポイントを外さず応答する。それで十分です。

    質問が聞き取れなかったら素直に聞き返しましょう。
    流暢さももちろん重要ですが、
    面接レベルの内容の会話で一度だけで完璧に聞き取って、完璧な答えを返すということは少ないです。
    質問の意図を正確に理解して、答えることの方がはるかに重要です。

    対策としては英作文で勉強したテーマを口頭である程度話せるようにするだけで大丈夫です。具体的には添削済みの自分の答案を音読するといいでしょう。
    発音等まで気をつけたい場合は
    音読のときに録音してみると自分の発音の良し悪しがわかるのでおすすめです。

    当塾ではネイティブの講師や英語圏に在住経験のあるハイレベルの講師を採用して、何をどうしたら良いのかという点まで対策をしております。
    英検準一級対策でご不明な点があればお気軽にご連絡ください。これからの入試において、何をどうしたらよいのか、ご相談レベルの話でもご不安がある場合は一度ご相談をいただければと思います。こちらからご相談ください。

2016年慶應義塾大学環境情報|過去問徹底研究 大問4

2019.09.23

方針の立て方 (1) 頻出問題であるため,原理とともに解法をおさえておきたい.答えとなる点は直線上にあるわけだが,直線は線分の垂直二等分線であるから,直線上の点と点,点との距離は等しくなる.よって,点で考察するのと,点で考察するのは等価となる.これが,この問題(解法)の原理である. (2) 前問で説

  • …続きを読む
  • 方針の立て方
    (1)
    頻出問題であるため,原理とともに解法をおさえておきたい.答えとなる点\mathrm{P}は直線l上にあるわけだが,直線lは線分\mathrm{AA}^\primeの垂直二等分線であるから,直線l上の点と点\mathrm{A},点\mathrm{A}^\primeとの距離は等しくなる.よって,点\mathrm{A}で考察するのと,点\mathrm{A}^\primeで考察するのは等価となる.これが,この問題(解法)の原理である.
    (2)
    前問で説明した原理を応用すればよい.

    解答例
    (50)(51)(52)(53)……\frac{-11}{6}
    (54)(55)(56)(57)……\frac{017}{6}
    (58)(59)(60)……\frac{-5}{3}
    (61)(62)(63)……\frac{08}{3}
    (64)(65)(66)……\frac{21}{5}
    (67)(68)(69)……\frac{06}{5}

    解説
    (1)

    上図のように,直線lに対して点\mathrm{A}と対称な点を\mathrm{A}^\primeとする.
    直線\mathrm{AA}^\prime(図の破線)の式はy=x+6であるから,\mathrm{A}^\primeの座標は,\left(-3,3\right)と分かる.
    よって,直線\mathrm{A}^\prime B(図の鎖線)の式はy=-\frac{1}{7}x+\frac{18}{7}と分かる.直線\mathrm{A}^\prime \mathrm{B}と直線lの交点が点\mathrm{P}であり,その座標は,
    \left(\frac{-11}{6},\frac{17}{6}\right)……(答)

    (2)

    直線mに対して点\mathrm{B}と対称な点を\mathrm{B}^\primeとする.前問と同様に点\mathrm{B}^\primeの座標を求めると,\left(5,1\right)となる.
    よって,直線\mathrm{A}^\prime \mathrm{B}^\prime(図の鎖線)の式はy=-\frac{1}{4}x+\frac{9}{4}と分かる.直線\mathrm{A}^\prime \mathrm{B}^\primeと直線l,mの交点が点\mathrm{P},\mathrm{Q}であり,その座標は,\mathrm{P}\left(-\frac{5}{3},\frac{8}{3}\right),\mathrm{Q}\left(\frac{21}{5},\frac{6}{5}\right)……(答)


  • 偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 早稲田校舎 : 〒162-0045
    東京都新宿区馬場下町9-7 ハイライフホーム早稲田駅前ビル4階
    TEL: 03-6884-7991
    営業時間: 月〜土 9:00-21:30 
  • Facebook Twitter
    Page Top

Copyright © BETELGEUSE corporation All Rights Reserved.

PAGE TOP