偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 資料請求
  • カウンセリング
慶應経済2016

2016年慶應大学経済学部|過去問徹底研究 大問6

方針の立て方

(1)は積分方程式の典型問題であるため特筆事項なし.
(2)は前問での議論を踏まえれば良い.Aが2つ出てきてしまうから,等式を満たすf\left(x\right)が2つ出てきてしまうのである.よって,Aが1つだけ出てくるならば,等式を満たすf\left(x\right)も1つしか出てこないと考える.
(3)は,まずは積分計算を素直に行えば良い.「aによらない」という条件が考えにくいが,実際にaに適当な値を代入して,それらが全てイコールになると考えると,分子が0になるという結論に達する.
(4)計算するだけ.

解答例

(1)
\int_{0}^{2}f\left(t\right)dt=A(Aは定数)とおくと,
f\left(x\right)=\frac{3}{a}x^2-\frac{1}{a}x+A^2=-3x^2+x+A^2
よって,
A=\int_{0}^{2}f\left(t\right)dt=\int_{0}^{2}\left(-3t^2+t+A^2\right)dt=\left[-t^3+\frac{1}{2}t^2+A^2t\right]_0^2=2A^2-6\Leftrightarrow2A^2-A-6=0\Leftrightarrow\left(2A+3\right)\left(A-2\right)=0
\therefore A=-\frac{3}{2},2
これをf\left(x\right)=-3x^2+x+A^2に代入すれば,
f\left(x\right)=-3x^2+x+\frac{9}{4}または-3x^2+x+4……(答)

(2)
\int_{0}^{2}f\left(t\right)dt=A(Aは定数)とおくと,
f\left(x\right)=\frac{3}{a}x^2-\frac{1}{a}x+A^2
よって,
A=\int_{0}^{2}f\left(t\right)dt=\int_{0}^{2}\left(\frac{3}{a}t^2-\frac{1}{a}t+A^2\right)dt=\left[\frac{1}{a}t^3-\frac{1}{2a}t^2+A^2t\right]_0^2=2A^2+\frac{6}{a}\Leftrightarrow2A^2-A+\frac{6}{a}=0
題意を満たすには,Aに関する二次方程式:2A^2-A+\frac{6}{a}=0の解が重解となれば必要十分.
よって,判別式が0であれば必要十分であるから,
\left(-1\right)^2-4\cdot2\cdot\frac{6}{a}=0\Leftrightarrow a=48……(答)

(3)
\int_{0}^{b}\left\{f\left(x\right)-f\left(b\right)\right\}dx=\int_{0}^{b}\left\{\frac{3}{a}x^2-\frac{1}{a}x-\frac{3}{a}b^2+\frac{1}{a}b\right\}dx=\left[\frac{1}{a}x^3-\frac{1}{2a}x^2-\frac{3}{a}b^2x+\frac{1}{a}bx\right]_0^b=-\frac{b^2\left(4b-1\right)}{2a}
よって,-\frac{b^2\left(4b-1\right)}{2a}の値がaによらない場合を考えると,分子が0となるとき.bが正の実数であることから,
b=\frac{1}{4}……(答)

(4)
\left(a,b\right)=\left(48,\frac{1}{4}\right)である.また,a=48のとき,(2)で考えたAに関する二次方程式の解は,A=\frac{1}{4}
よって,\bigmf\left(x\right)=\frac{1}{16}x^2-\frac{1}{48}x+\frac{1}{16}
\int_{b}^{2}f\left(x\right)dx=\int_{\frac{1}{4}}^{2}\left(\frac{1}{16}x^2-\frac{1}{48}x+\frac{1}{16}\right)dx=\frac{1}{48}\left[x^3-\frac{1}{2}x^2+3x\right]_{\frac{1}{4}}^2=\frac{721}{3072}……(答)

【無料プレゼント】LINE友だち追加で5大特典プレゼント

LINE公式に登録することで素敵なプレゼントをお渡しします。

Published by

早慶専門個別指導塾HIRO ACADEMIA

偏差値30から早稲田慶應に合格するための日本で唯一の予備校です。 ただ覚えるだけの丸暗記では早稲田慶應に合格することはできません。 本ブログでは、当塾のメソッドでいかにして考えて早稲田慶應に合格することができるのかの一部をお伝えします。