偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 資料請求
  • カウンセリング
慶應経済2016

2016年慶應大学経済学部|過去問徹底研究 大問2

方針の立て方

(1)はどれも基本問題であるため特筆事項なし.

(2)について.\frac{b_k}{a_ka_{k+1}}は分子を和の形に直すと,約分ができ回答欄の形式に沿うと分かる.よって,b_kを和の形に変形するが,これはb_kの定義を用いれば容易い.

(3)について.前問で求めたS_nの分母を上手く約分できないかを考えれば,本解のような式変形ができる.

解答例

(13)3
(14)2
(15)2
(16)1
(17)1
(18)(19)-1
(20)1
(21)2
(22)2
(23)(24)01
(25)(26)-1
(27)0
(28)2
(29)2
(30)2
(31)2
(32)(33)02

解説

(1)
a_{n+1}=\frac{1}{100}a_n+\frac{1}{10}\Leftrightarrow a_{n+1}-\frac{10}{99}=\frac{1}{100}\left(a_n-\frac{10}{99}\right)
と変形できる.
\therefore a_n-\frac{10}{99}=\left(a_1-\frac{10}{99}\right)\cdot\left(\frac{1}{100}\right)^{n-1}=-\frac{10}{99}\left(\frac{1}{100}\right)^n\Leftrightarrow a_n=-\frac{10}{99}\left(\frac{1}{100}\right)^n+\frac{10}{99}
よって,階差数列\left\{b_n\right\}は,
b_n=a_{n+1}-a_n=-\frac{10}{99}\left(\frac{1}{100}\right)^{n+1}+\frac{10}{99}-\left\{-\frac{10}{99}\left(\frac{1}{100}\right)^n+\frac{10}{99}\right\}=\frac{1}{{10}^3}\left(\frac{1}{{10}^2}\right)^{n-1}=\frac{1}{{10}^{2n+1}}
となる.よって,p=3,q=2,r=2,s=1……(答)
更に,
a_n=a_1+\left(a_2-a_1\right)+\left(a_3-a_2\right)+\cdots\cdots+\left(a_n-a_{n-1}\right)=a_1+\left(b_1+b_2+\cdots\cdots+b_{n-1}\right)=a_1+\sum_{k=1}^{n+\left(-1\right)}b_k……(答)
また,
a_1+\sum_{k=1}^{n+\left(-1\right)}b_k=\frac{1}{10}+\frac{\frac{1}{{10}^3}\left\{1-\left(\frac{1}{{10}^2}\right)^{n-1}\right\}}{1-\frac{1}{{10}^2}}=\frac{\frac{1}{10}\left(1-\frac{1}{{10}^{2n}}\right)}{1-\frac{1}{{10}^2}}
であるから,t=1,u=2,v=2……(答)

(2)
b_n=a_{n+1}-a_nより,
\frac{b_k}{a_ka_{k+1}}=\frac{a_{k+1}-a_k}{a_ka_{k+1}}=\frac{1}{a_k}+\frac{-1}{a_{k+1}}……(答)
これに,b_k=\frac{1}{{10}^{2k+1}}を代入すれば,
\frac{\frac{1}{{10}^{2k+1}}}{a_ka_{k+1}}=\frac{1}{a_k}-\frac{1}{a_{k+1}}\Leftrightarrow\frac{1}{a_ka_{k+1}}={10}^{2k+1}\left(\frac{1}{a_k}-\frac{1}{a_{k+1}}\right)
これを利用すれば,
S_n=\sum_{k=1}^{n}\left\{\frac{1}{{10}^{2k}}\cdot{10}^{2k+1}\left(\frac{1}{a_k}-\frac{1}{a_{k+1}}\right)\right\}=10\sum_{k=1}^{n}\left(\frac{1}{a_k}-\frac{1}{a_{k+1}}\right)=10\left\{\left(\frac{1}{a_1}-\frac{1}{a_2}\right)+\left(\frac{1}{a_2}-\frac{1}{a_2}\right)+\cdots\cdots+\left(\frac{1}{a_n}-\frac{1}{a_{n+1}}\right)\right\}=10\left(\frac{1}{a_1}-\frac{1}{a_{n+1}}\right)=10\left[10-\frac{1-\frac{1}{{10}^2}}{\frac{1}{10}\left\{1-\frac{1}{{10}^{2\left(n+1\right)}}\right\}}\right]=\frac{1-\frac{1}{{10}^{2n}}}{1-\frac{1}{{10}^{2n+2}}}
となるから,w=0,x=2,y=2,z=2……(答)

(3)
\left({100}^{n+1}-1\right)S_n={10}^{2n+2}\left(1-\frac{1}{{10}^{2n+2}}\right)\cdot\frac{1-\frac{1}{{10}^{2n}}}{1-\frac{1}{{10}^{2n+2}}}={10}^{2n+2}-{10}^2
よって,2n+2桁……(答)

【無料プレゼント】LINE友だち追加で5大特典プレゼント

LINE公式に登録することで素敵なプレゼントをお渡しします。

Published by

早慶専門個別指導塾HIRO ACADEMIA

偏差値30から早稲田慶應に合格するための日本で唯一の予備校です。 ただ覚えるだけの丸暗記では早稲田慶應に合格することはできません。 本ブログでは、当塾のメソッドでいかにして考えて早稲田慶應に合格することができるのかの一部をお伝えします。