偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 資料請求
  • カウンセリング

早慶の過去問をやってみたけど全然できません。もう受かりませんか?

2019.08.09

本記事ではこれまでに、当塾に数多く寄せられたカウンセリングの中から抜粋して、 解決策を提案いたします。 質問者様と状況が同じような方の何か手助けになれば幸いです。(*他の方にも役に立つためにもなるべく具体的に記述いたしますが、個人が特定されない程度に情報は伏せさせていただいています) 勉強の効率が2

  • …続きを読む
  • 本記事ではこれまでに、当塾に数多く寄せられたカウンセリングの中から抜粋して、 解決策を提案いたします。

    質問者様と状況が同じような方の何か手助けになれば幸いです。(*他の方にも役に立つためにもなるべく具体的に記述いたしますが、個人が特定されない程度に情報は伏せさせていただいています) 勉強の効率が2.5倍上がるカウンセリングのお申込みはこちらから申し込みしております。

    石川県にお住いの浪人生からの相談です

    [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="ご相談者"]

    夏休みに入って早慶の過去問をやってみました。
    現役の時よりも色々参考書もやったし、授業も受けてきたので、
    実力が上がったしできるかなと思ってみたのですが、全くできません。。。

    これはもう私には才能がなくてできないのでしょうか。

    [/speech_bubble]

    HIRO ACADEMIAからのご提案

    ご連絡ありがとうございます。 

    まず結論から言いますとこの時期に過去問ができていなくても受からないことはありません。それは浪人生であってもです。

    まだまだ受験は半ばに差し掛かったばかりです。

    この時期に合格点を取れるかどうかは大した問題ではありません。今後の進め方次第で挽回はどのようにもすることは可能です。

    ではどのように過去問を使って行ったら良いのかを今回はお伝えしていきます。

    過去問を使って、何ができて何ができてないかの区別をする

    実際の入試で点数は非常に重要です。

    1,2点で合否が別れるため、点数を意識していくこと自体は良いでしょう。

    ですが、この夏の時期に大事なのは、点数で一喜一憂するのではなく、

    勉強してできたこと(1)、

    勉強したのにできなかったこと(2)、

    勉強しなかったからできなかったこと(3) 

    を区別して、分析を進めることが重要です。

    よく過去問を行なって何点取れたから受かる、%を書いて60%取れたから受かると

    喜んでいたりしている人がいるのですが、これは意味がありません。

    大事なのは、 自分の勉強したことがちゃんと点数に反映されているか、

    また、勉強したのにできなかった場合はなぜできてなかったのかということをしっかり分析していき、日々の勉強に再反映させて再度プランを組むことが良いでしょう。

    どのように分析をして日々の勉強に反映させていくのか?

    できてない問題があった時に、

    英語であればどの部分が原因で問題を解くことができなかったのか、

    その原因にあたる文章を見つけて、その文章で使われている構文、単語がなぜわからなかったのかを分析していきます。

    そもそも知らなかった場合は、再度覚えなおせば良いのですが、

    知っていたのにできないという場合は、

    復習不足または根本的な理解ができてない可能性があるので、

    再理解をしていく必要があるでしょう。

    このように分析を行なっていくことで確実にできない部分を潰していくことで志望校と自身のギャップを埋めていくことができ、合格に近づくことができるでしょう。

    分析を行っていくことで意外と難しくないということにも気づいて、

    今やっていることを極めることで早慶に近づくことができる!ということに気づくでしょう。

    まとめ

    過去問の点数で一期一憂していても仕方がありません。

    よくよく現在の状況を考え分析をして、受験の戦略を練っていきましょう!

    勉強の効率が2.5倍上がるカウンセリングのお申込みはこちらから申し込みしております。

早稲田大学教育学部【数学】|本番で圧勝の徹底対策シリーズ

2019.07.29

早稲田大学教育学部 全体概観: 理系数学なので当たり前なのですが、数学Ⅲの微分積分をテーマとした問題が、毎年出題されています。 その他の分野では、数列、漸化式、確率、場合の数、といった分野も頻出となっています。 難易度は、バラバラで難しい問題もあれば、簡単めの問題も出題されています。難易度の差はあり

  • …続きを読む
  • 早稲田大学教育学部

    [toc]
    全体概観:
    理系数学なので当たり前なのですが、数学Ⅲの微分積分をテーマとした問題が、毎年出題されています。
    その他の分野では、数列、漸化式、確率、場合の数、といった分野も頻出となっています。
    難易度は、バラバラで難しい問題もあれば、簡単めの問題も出題されています。難易度の差はありますが、制限時間120分というのを考えると決してやさしくはありません。

    圧勝している人はこう考える

    ここでは過去問を使って、早慶の入試で圧勝をしている人はどのように考えているのかを示していきます。

    (1)は簡単ですが、少し実験して考えてみましょう。

    実験

    ここくらいまで考えれば、状況がつかめてきますね!

    ・n秒後に外の囲い(■)が点灯すること。

    ・3囲いずつ点灯と消灯をくり返すこと。(周期が3)

    ここまでつかめば、こっちのものです。

    記述するにおいて、上のように”・”をたくさん書くのは面倒ですし、厳密な答案を書く上で少し工夫してみましょう。

    n=1で点灯した電球を原点(0,0)として、電球を座標平面上の格子点に載せてみます。

    解 電球を座標平面上の格子点にのせて、最初に点灯した電球を原点(0,0)にもってくる。

    (1)n+1秒後に初めて点灯した電球はn秒後に点灯した電球と隣接しているから|P_{n+1}-P_n|=1or\sqrt2である。

    (P_kはk秒後にはじめて点灯した電球)(n≧1)

    ∴n秒後に初めて点灯する電球の個数a_nは|x|=n-1かつ|y|=n-1かつ|x|≦n-1,|y|≦n-1を満たす格子点の個数に一対一に対応する。

    a_n=4{2(n-1)+1}-4=8(n-1)(n≧1)

    以上からまとめるとa_1=1,a_n=8(n-1)(n≧2)…(答)

    (2)消える電球を無視して考えると、n秒後についている電球の個数S_nは1辺が(2n-1)の正方形の面積と対応するから、S_n=(2n-1)^2…①

    ここから、周期3ごとに消灯する電球を引いて考える。

    (ⅰ)n=3k+1(k≧1)のとき、b_n=S_n-(a_2+a_5+\ldots+a_{3k-1})=S_n-\displaystyle\sum_{l=1}^k 8\{(3l-1)-1\}=S_n-8(\frac{3}{2}k(k+1)-2k)=S_n-4(3k^2-k)=(2n-1)^2-4\{(n-1)\frac{n-1}{3}-\frac{n-1}{3}\}=(2n-1)^2-\frac{4}{3}(n-1)(n-2)=\frac{8n^2-5}{3}…(答)(n=1のときも成立)

    (ⅱ)n=3k+2(k≧2)

    b_n=S_n-(a_3+a_6+\ldots+a_{3k})=S_n-\displaystyle\sum_{l=1}^k 8(3l-1)=S_n-8\{\frac{3}{2}k(k+1)-k\}=S_n-4(3k^2+k)=(2n-1)^2-4\{(n-2)\frac{n-2}{3}+\frac{n-2}{3}\}=(2n-1)^2-\frac{4}{3}(n-1)(n-2)=\frac{8n^2-5}{3}…(答)(n=2のときも成り立つ。)

    (ⅲ)n=3(k+1)(k≧1)

    b_n=S_n-(a_1+a_4+\ldots+a_{3k+1})=S_n-\{1+\displaystyle\sum_{l=1}^k  8(3k+1-1)\}=S_n-(1+8\sum_{l=1}^k 3k)=S_n-{1+12k(k+1)}=S_n-\{1+4(n-3)\frac{n}{3}\}=(2n-1)^2-\frac{4}{3}n(n-3)-1=4n^2-\frac{4}{3}n^2=\frac{8}{3}n^2…(答)

    (3)(2)より

    (ⅰ)(ⅱ)のとき、\displaystyle\lim_{n \to \infty}\frac{b_n}{n^2}=\frac{8}{3}-\frac{5}{n^2}=\frac{8}{3}

    (ⅲ)のとき、\displaystyle\lim_{n\to\infty}\frac{b_n}{n^2}=\frac{8}{3}

    なので、\displaystyle\lim_{n\to\infty}\frac{b_n}{n^2}=\frac{8}{3}…(答)

    ■(3)を少し考えてみましょう。

    S_n=(2n-1)^2とは(2)の通り左図の斜線の面積でn^2は、左図でいう約第一象限分の面積ですから、\displaystyle\lim_{n\to\infty}\frac{S_n}{n^2}=4です。

    b_n=S_n-T_n(消灯分の面積)なので、\frac{b_n}{n^2}=\frac{S_n}{n^2}-\frac{T_n}{n^2}

    \displaystyle\lim_{n\to\infty}\frac{b_n}{n^2}=\displaystyle\lim_{n\to\infty}\frac{S_n}{n^2}-\lim_{n\to\infty}\frac{T_n}{n^2}

    \displaystyle\lim_{n\to\infty}\frac{T_n}{n^2}をXとすると、

    \frac{8}{3}=4-X \rightleftharpoons X=\frac{4}{3}

    \displaystyle\lim_{n\to\infty}\frac{T_n}{n^2}=\frac{1}{2}\lim_{n\to\infty}\frac{b_n}{n^2}がわかります。

    原点に点がついたときは、点灯している面積のほうが断然大きくなりますが、nが十分大きくなると(消灯分の面積):(点灯分の面積)=1:2となっていくわけですね。

    一人ひとりの節電が地球を救います!Let’s省エネ!

    (問)nを2以上の自然数とし1からnまでの自然数の順列:a_1 a_2 \ldots a_nのうち条件(※)を満たす順列の個数をP_nとおく。

    条件(※):a_k<a_{k+1}を満たさないようなkが順列中にただ1つ存在する。

    以下の問いに答えよ。

    (1)P_3を求めよ。

    (2)P_4を求めよ。

    (3)P_{n+1}P_nを用いて表わせ。

    (4)P_nをnを用いて表わせ。   (2017早大教育1(2)改題)

    少し解きやすく改題してみました。早速やってみましょう。

    実験  P_nに適する順列を(  ),適さないものを{  }で表します。

    (表)

    あとは各々の補題(ⅰ)(ⅱ)を示して(3)を先に解いてしまいます。

    [(ⅰ)の証明]

    nを大きな数とする。P_nのある順列について、(a_1,a_2,\ldots,a_i,a_{i+1}\ldots,a_n)が(※)と条件を満たすとする。(a_i>a_{i+1})

    ここに(n+1)を挿入することを考える。

    (Ⅰ)a_1,a_2,\ldots,a_iについて、a_j(1≦j≦i)はすべてn以下なので、この↑のうち1つに(n+1)を挿入するとa_k<a_{k+i}を満たさないところがこの順列だけで1か所存在してしまい、a_i>a_{i+1}と合わせて2か所存在するので、(※)に反する。

    (Ⅱ)いま、a_i<n+1かつa_{i+1}<n+1なので(※)を満たす順列が作れる。

    (Ⅲ)(Ⅰ)と同様に不適。

    (Ⅳ)a_n<n+1であるから(※)を満たす順列が作れる。

    以上、(Ⅰ)〜(Ⅳ)から(ⅰ)は示される。

    [(ⅱ)の証明]

    いま、↑のnコに(n+1)を挿入すれば、a_l>a_{l+1}を満たすところが1ヶ所だけ存在する。(nコのうしろに挿入すると、{1,2,…n,n+1}となり(※)に不適)

    (1,2,3,…n)の元の並びから、(ⅰ)と(ⅱ)は互いに排反である。

    以上から、P_{n+1}=2P_n+n…(答(3))が導けました。

    (P_3=4,P_4=2・4+3=11)

    (4)さて、P_{n+1}=2P_n+n…①を解いてみましょう。

    ①⇄P_{n+1}+n=2(P_n+n-1)+2

    a_n=P_n+(n-1)とおく。a_{n+1}=2a_n+2 \rightleftharpoons a_{n+1}+2=2(a_n+2) \rightleftharpoons a_n+2=2^{n-2}(a_2+2)

    (a_2=P_2+1=2)よりa_n=2^n-2

    P_n=a_n-(n-1)=2^n-(n+1)…(答)となります。

    どうでしたか?実験の重要性をわかって頂けましたか?

    ただ覚えるだけの数学だけではなく、考えて数学を勉強していきましょうー!

    早稲田大学 教育学部に圧倒的な実力で合格できる専門対策をします

    まずは資料請求・お問い合わせ・学習相談から!

    早慶専門個別指導塾HIRO ACADEMIAには、早稲田大学専門として教育学部への圧倒的な合格ノウハウがございます。

    少しでもご興味をお持ちいただいた方は、まずは合格に役立つノウハウや情報を、詰め込んだ資料をご請求ください。

    また、早稲田大学教育学部に合格するためにどのよう勉強をしたらよいのかを指示する学習カウンセリングも承っています。学習状況を伺った上で、残りの期間でどう受かるかを提案いたしますので、ぜひお気軽にお電話いただければと思います。

    早稲田大学・教育学部に合格したい方は、まずは当塾の資料をご請求ください。

高校これでわかる数学ⅡB|圧倒的に成績を伸ばす方法

2019.07.15

参考書の特色 対象者 数学ⅡBを基礎レベルから勉強したい人 定期テストで良い点を取りたい人向け 偏差値45~55程度 本書は教科書レベルの内容を大判の紙面で丁寧に説明してくれる参考書です。 本書を一通りやれば受験勉強に必要な基本の解法は網羅できます。 会話形式で具体例をくわえながら、丁寧に説明してく

  • …続きを読む
  • [toc]

    参考書の特色

    対象者

    数学ⅡBを基礎レベルから勉強したい人
    定期テストで良い点を取りたい人向け 偏差値45~55程度

    本書は教科書レベルの内容を大判の紙面で丁寧に説明してくれる参考書です。
    本書を一通りやれば受験勉強に必要な基本の解法は網羅できます。

    会話形式で具体例をくわえながら、丁寧に説明してくれています。

    使い方

    完成までの期間

    2~3ヶ月程度

    問題数が基本問題295問 応用問題 293問 発展問題296問 合計900問程度あります。
    そのため、未習の人は1から、基本例題のみで大丈夫です。
    ある程度できる人は必要な問題をピックアップしてやるのがおすすめです。
    問題を全部やる場合、量が結構あるので余裕をもって始めるようにしましょう。

慶應商学部、経済学部合格に数学選択は有利ですか?

2019.07.09

本記事ではこれまでに、当塾に数多く寄せられたカウンセリングの中から抜粋して、 解決策を提案いたします。 質問者様と状況が同じような方の何か手助けになれば幸いです。(*他の方にも役に立つためにもなるべく具体的に記述いたしますが、個人が特定されない程度に情報は伏せさせていただいています) 勉強の効率が2

  • …続きを読む
  • 本記事ではこれまでに、当塾に数多く寄せられたカウンセリングの中から抜粋して、 解決策を提案いたします。

    質問者様と状況が同じような方の何か手助けになれば幸いです。(*他の方にも役に立つためにもなるべく具体的に記述いたしますが、個人が特定されない程度に情報は伏せさせていただいています) 勉強の効率が2.5倍上がるカウンセリングのお申込みはこちらから申し込みしております。

    神奈川県にお住いの高校2年からの相談です

    [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="ご相談者"] 慶應大学には商学部と経済学部にA方式があります。この方式の方が有利に見えるのですが、慶應に受かるために数学を始めた方が良いですか?[/speech_bubble]

    HIRO ACADEMIAからのご提案

    ご連絡ありがとうございます! 確かに、合格者人数や募集人数を見てみると受かりやすいと言えます。 まずは、実際にその数字を見てみましょう。 経済学部(2018年)

      A方式 B方式
    倍率 4.2 5.1
    募集人数 420 210
    合格者数 1039 431
    合格最低点 207 243

    商学部(2018年)

      A方式 B方式
    倍率 4.2 9.1
    募集人数 480 120
    合格者数 1257 301
    合格最低点 265 293

    こう見ると、その違いはわかりますね。 特に商学部の場合,2017年の場合はA方式とB方式で70点近く合格点に差が生まれてしまいました。 この差ってとんでもないですよね。 と思うと、数学選択の方が有利!思うかもしれません。ですが、この法則は誰にでも当てはまるわけではありません。

    基準を定めよう

    慶應は英語が合格のためには必要不可欠です。

    英語もできない、数学もできないという状態(両方偏差値50以下)で高校3年生を迎えている場合は、合格の可能性はかなり難しいと考えましょう。 これは何も数学がセンスが必要だからと言っているわけではありません。逆に数学は、正しく勉強すれば誰でも成績を伸ばせる科目であると思っています。

    センスの問題ではなくて、単純に時間が足りなくなるからです。
    どんだけ効率的な勉強法で勉強したとしても、成績を上げるためにはそれ相応の勉強時間が必要です。

    学校の定期テストのように覚えておしまい!というわけではありません。 特に英語と数学の場合は、基礎事項を覚えてそのルールを転用していく時間が必要になります。 また英語で苦労している場合は、覚えることが膨大にあるため数学と両方で勉強する場合は、なかなか成績を上げることが難しいでしょう。

    そのため、数学を慶應の受験で使うと決めるには高校3年生の時点で、英語が偏差60を超えたら・・・と考えください。

    そのレベルであれば、たとえ数学が全くできない状況であっても、慶應の数学を0から3年生の段階で始めることは全くの無理ではありません。

    逆にその基準に至ってない場合は、英語の成績を上げることに集中して、

    歴史での入試に切り替えた方が良いです。

    まとめ

    人によって状況は全く違いますので、自分の状況を考えずに慶應は数学が有利!ということに流されてはいけません。
    数値上有利なのと自分が合格できるかどうかは別問題です。

    よくよく現在の状況を考えて、受験の戦略を練っていきましょう!

    勉強の効率が2.5倍上がるカウンセリングのお申込みはこちらから申し込みしております。

早慶への物理勉強法おすすめ参考書|偏差値30から早慶圧勝レベルまで効率的に成績を上げる方法

2019.07.06

早慶専門ヒロアカが厳選!! 早慶のための物理おすすめ参考書 当塾で使用する参考書の一覧です。生徒の学力に応じてピックアップしていきます。 *すべての参考書を使用するわけではありません。入試までの期間に応じて塾側でピックアップします。独学で本参考書のまとめを見る人は全ての参考書を実施しないよう注意して

  • …続きを読む
  • 早慶専門ヒロアカが厳選!! 早慶のための物理おすすめ参考書

    当塾で使用する参考書の一覧です。生徒の学力に応じてピックアップしていきます。
    すべての参考書を使用するわけではありません。入試までの期間に応じて塾側でピックアップします。独学で本参考書のまとめを見る人は全ての参考書を実施しないよう注意してください。

    物理勉強法シリーズをまだ読んでいない人はこちらから

    [nlink url="https://hiroacademia.jpn.com/blog/program/physics-benkyo/"]

    クリックすると参考書の詳細ページに飛ぶことができます。

    ■初歩| 導入レベル

    とってもやさしい物理基礎

    『物理レベル別問題集 レベル1』

    ■基礎| 初級レベル

    秘伝の物理(力学/波動編)(電磁気/原子物理)

    『秘伝の物理問題集

    物理 入門問題精講

    ■MARCHレベル

    物理 良問問題集

    ■早慶レベル

    物理 入試の核心

    標準問題精講

    ■早慶合格レベル

    難問題の系統

    早稲田慶應を目指して成績を圧倒的にあげたいのであれば・・・

    早稲田慶應に合格するために何をしたら良いのか、圧倒的に成績をあげるためにはどうしたら良いのか、カウンセリングでは全てをお伝えします。
    こちらからお申し込みください。

早慶への化学勉強法おすすめ参考書|偏差値30から早慶圧勝レベルまで効率的に成績を上げる方法

2019.07.05

早慶専門ヒロアカが厳選!! 早慶のための化学おすすめ参考書 当塾で使用する参考書の一覧です。生徒の学力に応じてピックアップしていきます。 *すべての参考書を使用するわけではありません。入試までの期間に応じて塾側でピックアップします。独学で本参考書のまとめを見る人は全ての参考書を実施しないよう注意して

  • …続きを読む
  • 早慶専門ヒロアカが厳選!! 早慶のための化学おすすめ参考書

    当塾で使用する参考書の一覧です。生徒の学力に応じてピックアップしていきます。
    すべての参考書を使用するわけではありません。入試までの期間に応じて塾側でピックアップします。独学で本参考書のまとめを見る人は全ての参考書を実施しないよう注意してください。

    化学勉強法シリーズをまだ読んでいない人はこちらから

    https://hiroacademia.jpn.com/blog/program/kagaku-benkyo/

    クリックすると参考書の詳細ページに飛ぶことができます。

    ■初歩| 導入レベル

    とってもやさしい化学基礎

    『化学レベル別問題集 レベル1』

    ■基礎| 高校数学初級レベル

    入試化学をイチから始める化学 理論編 無機/有機化学編

    東進 化学基礎/化学一問一答

    ■MARCHレベル

    化学基礎問題精講

    化学 良問の問題集

    ■早慶レベル

    化学標準問題精講

    ■早慶合格レベル

    新理系の化学問題100選

    早稲田慶應を目指して成績を圧倒的にあげたいのであれば・・・

    早稲田慶應に合格するために何をしたら良いのか、圧倒的に成績をあげるためにはどうしたら良いのか、カウンセリングでは全てをお伝えします。
    こちらからお申し込みください。

早慶への世界史勉強法おすすめ参考書|偏差値30から早慶圧勝レベルまで効率的に成績を上げる方法

2019.07.05

早慶専門ヒロアカが厳選!! 早慶のための世界史おすすめ参考書 当塾で使用する参考書の一覧です。生徒の学力に応じてピックアップしていきます。 *すべての参考書を使用するわけではありません。入試までの期間に応じて塾側でピックアップします。独学で本参考書のまとめを見る人は全ての参考書を実施しないよう注意し

  • …続きを読む
  • 早慶専門ヒロアカが厳選!! 早慶のための世界史おすすめ参考書

    当塾で使用する参考書の一覧です。生徒の学力に応じてピックアップしていきます。
    すべての参考書を使用するわけではありません。入試までの期間に応じて塾側でピックアップします。独学で本参考書のまとめを見る人は全ての参考書を実施しないよう注意してください。

    世界史勉強法シリーズをまだ読んでいない人はこちらから

    [nlink url="https://hiroacademia.jpn.com/blog/program/sekaishi-benkyo/"]

    クリックすると参考書の詳細ページに飛ぶことができます。

    ■初歩| 導入

    [su_label type="success" class=""]理解[/su_label]『世界の歴史』

    ■基礎|初級レベル

    [su_label type="success" class=""]インプット[/su_label]『神余秀樹の世界史教室』

    [su_label type="warning" class=""]アウトプット[/su_label]『時代と流れで覚える! 世界史B用語

    ■MARCHレベル

    [su_label type="success" class=""]インプット[/su_label]『ナビゲーター世界史1〜4

    [su_label type="success" class=""]整理[/su_label]『大学受験 ココが出る!! 世界史Bノート

    [su_label type="warning" class=""]アウトプット[/su_label]『時代と流れで覚える! 世界史B用語

    ■早慶レベル

    [su_label type="success" class=""]インプット[/su_label]『ナビゲーター世界史1〜4

    [su_label type="info" class=""]アウトプット[/su_label]『HISTORIA 世界史

    [su_label type="info" class=""]論述アウトプット[/su_label]『世界史 論述練習帳 NEW

    ■早慶合格レベル

    [su_label type="info" class=""]アウトプット[/su_label]『実力をつける世界史

早慶への日本史勉強法おすすめ参考書|偏差値30から早慶圧勝レベルまで効率的に成績を上げる方法

2019.07.03

早慶専門ヒロアカが厳選!! 早慶のための日本史おすすめ参考書 当塾で使用する参考書の一覧です。生徒の学力に応じてピックアップしていきます。 *すべての参考書を使用するわけではありません。入試までの期間に応じて塾側でピックアップします。独学で本参考書のまとめを見る人は全ての参考書を実施しないよう注意し

  • …続きを読む
  • 早慶専門ヒロアカが厳選!! 早慶のための日本史おすすめ参考書

    当塾で使用する参考書の一覧です。生徒の学力に応じてピックアップしていきます。
    すべての参考書を使用するわけではありません。入試までの期間に応じて塾側でピックアップします。独学で本参考書のまとめを見る人は全ての参考書を実施しないよう注意してください。

    日本史勉強法シリーズをまだ読んでいない人はこちらから

    [nlink url="https://hiroacademia.jpn.com/blog/program/nihonshi-benkyo/"]

    クリックすると参考書の詳細ページに飛ぶことができます。

    ■初歩| 中学英語レベル

    [su_label type="success" class=""]英単語/熟語[/su_label]『まんが版 日本の歴史』

    ■基礎| 高校数学初級レベル

    [su_label type="success" class=""]英単語/熟語[/su_label]『石川晶康の日本史教室』

    [su_label type="warning" class=""]英文法/英作文[/su_label]『時代と流れで覚える! 日本史B用語

    ■MARCHレベル

    [su_label type="warning" class=""]英文法/英作文[/su_label]『石川の日本史実況中継1〜4

    [su_label type="warning" class=""]英文法/英作文[/su_label]『東進一問一答』

    [su_label type="warning" class=""]英文法/英作文[/su_label]『詳説日本史 改訂版 ノート』

    ■早慶レベル

    [su_label type="info" class=""]長文[/su_label]『HISTORIA日本史

    [su_label type="info" class=""]長文[/su_label]『眠れぬ夜の日本史

    [su_label type="info" class=""]長文[/su_label]『考える日本史論述』

    ■早慶合格レベル

    [su_label type="info" class=""]長文[/su_label]『実力をつける日本史100題』

    早稲田慶應を目指して成績を圧倒的にあげたいのであれば・・・

    早稲田慶應に合格するために何をしたら良いのか、圧倒的に成績をあげるためにはどうしたら良いのか、カウンセリングでは全てをお伝えします。
    こちらからお申し込みください。

【使い方】日常学習から入試まで使える 小倉悠司の ゼロから始める数学1・A| 圧倒的に成績を伸ばす方法

2019.07.03

参考書の特色 対象者 高1高2生、入試の基礎固めをしたい人、数Ⅰ・Aを最初からやり直したい人、数Ⅰ・Aが苦手な人 偏差値40~55 本書は800ページほどの分厚い参考書です。これだけ聞くとやりたくなくなる人も少なくないと思いますが、分厚い参考書というのは分厚い分途中式等の省略がなく、説明が非常に丁寧

  • …続きを読む
  • [toc]

    参考書の特色

    対象者

    高1高2生、入試の基礎固めをしたい人、数Ⅰ・Aを最初からやり直したい人、数Ⅰ・Aが苦手な人 偏差値40~55

    本書は800ページほどの分厚い参考書です。これだけ聞くとやりたくなくなる人も少なくないと思いますが、分厚い参考書というのは分厚い分途中式等の省略がなく、説明が非常に丁寧に書かれているのが一般的です。

    本書に至っては必要に応じて中学の復習にも紙面が割かれており、これでもかというほど丁寧に説明がなされています。未修の人が本書を使って独学で進めていくということもできるでしょう。

    それでいて本書の扱っている内容を仕上げれば、センターレベルでそれほど苦戦することがなくなるくらいには内容が詰まっています。まさに座右の書にふさわしい一冊です。

    使い方

    使用期間

    2~3ヶ月

    シンプルに前から順番に読み進めて、問題が出てきたら解くのが基本です。説明が丁寧なので読んだ後であれば容易に問題を解けるでしょう。

    ただし、その時点でスラスラ解けるのはあくまで説明を直前に読んだからだということを忘れてはいけません。

    自分の力で問題を解けるようになるためには反復学習が必要不可欠です。その日の復習、前日の復習、章単位の復習など、こまめに復習を行い、問題を見た瞬間に解法が浮かび上がるレベルまで習熟度を高めましょう。

    基本問題で考え込むようでは、たとえ正答できても入試には対応できません。難関大学の二次試験で出題されるような応用問題は、突き詰めれば基本パターンの組み合わせですので、基本問題を瞬殺できるようにしておかないとどうしようもないのです。

    数学が苦手だとどうしても理解するところまでで消耗してしまい、アウトプットが疎かになりがちですが、いくら理解できても実際に問題を解くことができなければ点数になりません。理解→反復学習の流れで基礎をガッチリ固めましょう!