偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 資料請求
  • カウンセリング

2017年慶應大学理工|過去問徹底研究 大問4

2019.08.30

2017年慶應大学理工|過去問徹底研究 大問4 方針の立て方 (1)操作回数は高々2回のため,実際に書き出す方が早いと判断する. (2) (ヌ)については,特筆事項なし. (ネ)については,具体的に満たすものをいくつか書き下してみることで,1と2と3のみを出す必要があることが分かる.ただし,3を必ず

  • …続きを読む
  • 2017年慶應大学理工|過去問徹底研究 大問4

    方針の立て方

    (1)操作回数は高々2回のため,実際に書き出す方が早いと判断する.

    (2)
    (ヌ)については,特筆事項なし.
    (ネ)については,具体的に満たすものをいくつか書き下してみることで,1と2と3のみを出す必要があることが分かる.ただし,3を必ず出さねばならないという前提を忘れないように気を付けること.「最大値がnになる」のような問題ではこの解法は頻出かつ最速の解法なので押さえておくこと.

    (3)
    (ノ)については,「記録される数字が2種類で,かつ片方は1」という厳しい条件が課せられていることから,残りの1種類を虱潰しに考えつくせばよいと方針を立てる.
    (ハ)については,素直に条件付き確率p_nを計算することを試す.普通に計算できるため,後は極限の計算に持ち込めばよい.厳密な議論をすると長くなるが,本学部は穴埋め式答案のため,定性的な解法で答えを求めることで得点を稼ぎたい.
    (4)
    問題文の条件を満たすために,「k回目に(1≦kn-1)の操作で初めて1が記録され,m回目(k+1mn)の操作で初めて4が記録される」という状況をまず考える.その後でとの取りうる値で総和を取れば良い.満たすものを「…」などを使って文字に書き起こしてみるとこの解法やとの取りうる値の範囲を特定できる.

    解答例
    (1)
    ニ:\frac{19}{100}
    (2)
    ヌ:\frac{36}{625}
    ネ:\frac{243}{2000}
    (3)
    ノ:\frac{5^n-2^n-3}{{10}^n}
    ハ:\frac{5}{7}
    (4)
    ヒ:\frac{1}{5}+\frac{4}{5}\left(\frac{1}{2}\right)^n-\left(\frac{3}{5}\right)^n

    解説
    カードは全て区別する.
    (1)
    \left(1,1\right)\left(1,2\right)\left(1,3\right)\left(1,4\right)とこれらの中身を入れ替えた7組の取り出し方が題意を満たす.
    \therefore\frac{1\cdot1\cdot1+2\cdot1\cdot2+2\cdot1\cdot3+2\cdot1\cdot4}{{10}^2}=\frac{19}{100}……(答)

    (2)
    〇ヌについて
    1,2,3,4のカードをそれぞれ1回ずつ引けば必要十分.
    どの順番で取り出すかで4!通り.
    \therefore\frac{4!\cdot1\cdot2\cdot3\cdot4}{{10}^4}=\frac{36}{625}……(答)
    〇ネについて
    1,2,3のカードを4回引き続ける必要がある.ただし,3のカードが出ない場合(1と2のカードしか出ない場合)は不適である.よって,求める確率は,
    \left(\frac{6}{10}\right)^4-\left(\frac{3}{10}\right)^4=\frac{243}{2000}……(答)

    (別解)
    4回の操作の内,3のカードを何回取り出すかで場合分けする.
    (ⅰ)3のカードを4回取り出す場合
    3のカードのみを取り出し続ければいい.
    \therefore\frac{3^4}{{10}^4}=\frac{81}{10000}
    (ⅱ)3のカードを3回取り出す場合
    3以外のカードを何回目の操作で取り出すかで4通り.
    3以外のカードは2か1のカードでなければならない.
    \therefore\frac{4\times\left\{\left(2+1\right)\cdot3^3\right\}}{{10}^4}=\frac{324}{10000}
    (ⅲ)3のカードを2回取り出す場合
    3以外のカードを何回目の操作で取り出すかで4C2通り.
    \therefore\frac{{_4^}\mathrm{C}_2\times\left\{\left(2+1\right)^23^2\right\}}{{10}^4}=\frac{486}{10000}
    (ⅳ)3のカードを1回取り出す場合
    3のカードを何回目の操作で取り出すかで4通り.
    \therefore\frac{4\times\left\{\left(2+1\right)^3\cdot3\right\}}{{10}^4}=\frac{324}{10000}
    以上(ⅰ)~(ⅳ)より,求める確率は,
    \frac{81+324+486+324}{10000}=\frac{243}{2000}……(答)

    (3)
    〇ノについて
    1のカード以外のカードの数字について場合分けする.
    (Ⅰ)もう1種類の数字が2の場合
    1か2のカードのみを出し続ければ必要十分.ただし,1のみをn回,または2のみをn回出すのは除外することに注意.
    \therefore\frac{3^n-1^n-2^n}{{10}^n}
    以下同様に,
    (Ⅱ)もう1種類の数字が3の場合
    \frac{4^n-1^n-3^n}{{10}^n}
    (Ⅲ)もう1種類の数字が4の場合
    \frac{5^n-1^n-4^n}{{10}^n}
    以上(Ⅰ)~(Ⅲ)より,求める確率は,
    \frac{3^n-1^n-2^n}{{10}^n}+\frac{4^n-1^n-3^n}{{10}^n}+\frac{5^n-1^n-4^n}{{10}^n}=\frac{5^n-2^n-3}{{10}^n}……(答)
    (別解)
    少し遠回りになってしまいますが,以下のような別解も有効です.
    (Ⅰ)もう1種類の数字が2の場合
    1のカードをk回(1\leqq k\leqq n-1)取り出すとき,n回の内,どのk回で1のカードを取り出すかで,{_n^}\mathrm{C}_k通りあるため,1のカードをk回取り出す確率は,
    \frac{{_n^}\mathrm{C}_k\cdot1^k\cdot2^{n-k}}{{10}^n}
    である.これを1\leqq k\leqq n-1まで足し合わせれば,1と2のカードのみを出す確率となる.
    \therefore\sum_{k=1}^{n-1}\frac{{_n^}\mathrm{C}_k\cdot1^k\cdot2^{n-k}}{{10}^n}=\frac{1}{{10}^n}\left\{\sum_{k=0}^{n}\left({_n^}\mathrm{C}_k\cdot1^k\cdot2^{n-k}\right)-2^n-1\right\}=\frac{\left(1+2\right)^n-2^n-1}{{10}^n} (\because二項定理) =\frac{3^n-2^n-1}{{10}^n}
    (ⅱ)と(ⅲ)も同様に計算することができます.
    〇ハについて
    2種類の数字が何であるかについて場合分けする.前問の(Ⅰ)~(Ⅲ)に加えて,
    (Ⅳ)2と3の場合
    \frac{5^n-2^n-3^n}{{10}^n}
    (Ⅴ)2と4の場合
    \frac{6^n-2^n-4^n}{{10}^n}
    (Ⅵ)3と4の場合
    \frac{7^n-3^n-4^n}{{10}^n}
    よって,操作をn回行った時点で,記録されている数が2種類である確率は,
    \frac{5^n-2^n-3}{{10}^n}+\frac{5^n-2^n-3^n}{{10}^n}+\frac{6^n-2^n-4^n}{{10}^n}+\frac{7^n-3^n-4^n}{{10}^n}=\frac{7^n+6^n+2\cdot5^n-2\cdot4^n-2\cdot3^n-3\cdot2^n-3}{{10}^n}
    \therefore p_n=\frac{\frac{5^n-2^n-3}{{10}^n}}{\frac{7^n+6^n+2\cdot5^n-2\cdot4^n-2\cdot3^n-3\cdot2^n-3}{{10}^n}}=\frac{5^n-2^n-3}{7^n+6^n+2\cdot5^n-2\cdot4^n-2\cdot3^n-3\cdot2^n-3}
    ここで,nが十分に大きいとき,分母は7^nが支配的となり,分子は5^nが支配的となるため(厳密な議論は補足を参照),
    \lim_{n\rightarrow\infty}{\left(p_n\right)^\frac{1}{n}}=\frac{5}{7}……(答)
    (補足)
    〇まず,nが十分大きいとき,p_n\leqq\left(\frac{5}{7}\right)^nが成り立つことを示す.
    そのために,6^n+2\cdot5^n-2\cdot4^n-2\cdot3^n-3\cdot2^n-3>0を示す.
    6^n+2\cdot5^n-2\cdot4^n-2\cdot3^n-3\cdot2^n-3\geqq2^n\cdot3^n-2^n-2^{2n+1}-3\bigm=2^n\left(3^n-2^{n+1}-1\right)-3
    ここで,3^n-2^{n+1}-1\geqq1を示す.
    3^n-2^{n+1}-1\geqq1\Leftrightarrow1\geqq\frac{2}{3^n}+2\left(\frac{2}{3}\right)^n
    であるが,右の不等式はnが十分に大きいときには成立する.
    \therefore6^n+2\cdot5^n-2\cdot4^n-2\cdot3^n-3\cdot2^n-3\geqq2^n\left(3^n-2^{n+1}-1\right)-3\bigm\geqq2^n-3
    nが十分に大きいとき,2^n-3\geqq0となるから,
    6^n+2\cdot5^n-2\cdot4^n-2\cdot3^n-3\cdot2^n-3\geqq0
    が示せる.
    \therefore7^n+6^n+2\cdot5^n-2\cdot4^n-2\cdot3^n-3\cdot2^n-3\geqq7^n
    ところで,
    5^n-2^n-3\leqq5^n
    である.
    以上より,nが十分に大きいとき,
    p_n=\frac{5^n-2^n-3}{7^n+6^n+2\cdot5^n-2\cdot4^n-2\cdot3^n-3\cdot2^n-3}\leqq\frac{5^n}{7^n}=\left(\frac{5}{7}\right)^n
    〇次に,nが十分大きいとき,\frac{1}{24}\left(\frac{5}{7}\right)^n\leqq p_nが成り立つことを示す.
    7^n+6^n+2\cdot5^n-2\cdot4^n-2\cdot3^n-3\cdot2^n-3\leqq7^n+6^n+2\cdot5^n+2\cdot4^n+2\cdot3^n+3\cdot2^n+3\bigm\leqq7^n+7^n+2\cdot7^n+2\cdot7^n+2\cdot7^n+3\cdot7^n+7^n\bigm=12\cdot7^n
    次に,5^n-2^n-3\geqq\frac{5^n}{2}を示す.
    5^n-2^n-3\geqq\frac{5^n}{2}\Leftrightarrow5^n\geqq2^{n+1}+6\Leftrightarrow1\geqq2\left(\frac{2}{5}\right)^n+\frac{6}{5^n}
    であるが,最も右の不等式はnが十分に大きいときには成立する.
    以上より,nが十分に大きいとき,
    p_n=\frac{5^n-2^n-3}{7^n+6^n+2\cdot5^n-2\cdot4^n-2\cdot3^n-3\cdot2^n-3}\geqq\frac{\frac{5^n}{2}}{12\cdot7^n}=\frac{1}{24}\left(\frac{5}{7}\right)^n
    結局,nが十分に大きいとき,
    \frac{1}{24}\left(\frac{5}{7}\right)^n\leqq p_n\leqq\left(\frac{5}{7}\right)^n
    が成り立つといえる.
    \therefore\left(\frac{1}{24}\right)^\frac{1}{n}\cdot\frac{5}{7}\leqq\left(p_n\right)^\frac{1}{n}\leqq\frac{5}{7}
    ここで,
    \lim_{n\rightarrow\infty}{\left(\frac{1}{24}\right)^\frac{1}{n}\cdot\frac{5}{7}}=\frac{5}{7}
    より,はさみうちの原理から,
    \lim_{n\rightarrow\infty}{\left(p_n\right)^\frac{1}{n}}=\frac{5}{7}……(答)

    (4)
    k回目\left(1\leqq k\leqq n-1\right)の操作で初めて1が記録され,m回目\left(k+1\leqq m\leqq n\right)の操作で初めて4が記録されるとする.この場合の確率は,
    \left(\frac{5}{10}\right)^{k-1}\cdot\frac{1}{10}\cdot\left(\frac{6}{10}\right)^{m-\left(k-1\right)}\cdot\frac{4}{10}=\frac{1}{25}\left(\frac{1}{2}\right)^{k-1}\cdot\left(\frac{3}{5}\right)^{m-\left(k-1\right)}
    よって,求める確率は,
    \sum_{k=1}^{n-1}\sum_{m=k+1}^{n}{\frac{1}{25}\left(\frac{1}{2}\right)^{k-1}\cdot\left(\frac{3}{5}\right)^{m-\left(k-1\right)}}=\sum_{k=1}^{n-1}{\left(\frac{1}{2}\right)^{k-1}\cdot\frac{\frac{1}{25}\left\{1-\left(\frac{3}{5}\right)^{n-k}\right\}}{1-\frac{3}{5}}}=\sum_{k=1}^{n-1}{\frac{1}{10}\left(\frac{1}{2}\right)^{k-1}\left\{1-\left(\frac{3}{5}\right)^{n-k}\right\}}\bigm=\sum_{k=1}^{n-1}\left\{\frac{1}{10}\left(\frac{1}{2}\right)^{k-1}-\frac{1}{5}\left(\frac{3}{5}\right)^n\left(\frac{5}{6}\right)^k\right\}=\frac{\frac{1}{10}\left\{1-\left(\frac{1}{2}\right)^{n-1}\right\}}{1-\frac{1}{2}}-\frac{1}{5}\cdot\left(\frac{3}{5}\right)^n\cdot\frac{\frac{5}{6}\left\{1-\left(\frac{5}{6}\right)^{n-1}\right\}}{1-\frac{5}{6}}=\frac{1}{5}+\frac{4}{5}\left(\frac{1}{2}\right)^n-\left(\frac{3}{5}\right)^n……(答)

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。

2017年慶應大学理工|過去問徹底研究 大問1

2019.08.30

慶應義塾大学過去問徹底研究 2017年 大問1 方針の立て方 (1) (ア)について. 三角関数の括弧内が不揃いなことを考えると,展開することがよいと分かる. (イ)~(エ)について. の項を作り出さねばならないことを考えると,方針が立てられる.三角関数は相互関係でつながっているため,sinになって

  • …続きを読む
  • 慶應義塾大学過去問徹底研究 2017年 大問1

    方針の立て方

    (1)
    (ア)について.
    三角関数の括弧内が不揃いなことを考えると,展開することがよいと分かる.
    (イ)~(エ)について.
    \alpha-\frac{\pi}{6}の項を作り出さねばならないことを考えると,方針が立てられる.三角関数は相互関係でつながっているため,sinになっていてほしい部分がcosになっていたり,或いはその逆だったとしても焦らずに相互関係の式を用いるようにしよう.

    (2)
    (オ)については特筆事項なし.
    (カ)~(ク)について.
    z\in Mとなる条件を丁寧に確かめる.z\in Mとなる条件はかなり厳しい条件であるため,整数a,bの領域を求めた後は,しらみつぶし的に調べていけば,全ての問題があっという間に解ける.

    (3)
    f\left(f^{-1}\left(t\right)\right)=tという関係式はおさえておきたい(というより,これは逆関数の定義を表している).後は積分方程式の解法を取れば良い.

    解答例
    (1)
    ア:y=\frac{1}{2}x
    イ:\frac{1}{4-4\beta^2}
    ウ:\frac{\beta}{1-\beta^2}
    エ:\frac{1}{1-\beta^2}
    (2)
    オ:a^2+b^2
    カ:5
    キ:8
    ク:2+i
    (3)
    ケ:-2xe^{-2x^2}

    解説

    (1)
    〇アについて
    加法定理を用いれば,
    x=\sqrt3\cos{\omega t}-\sin{\omega t},\ y=-\frac{1}{2}\sin{\omega t}+\frac{\sqrt3}{2}\cos{\omega t}
    であるから,
    y=\frac{1}{2}x……(答)

    〇イ~エについて
    y=\sin{\left\{\left(\omega t+\frac{\pi}{6}\right)+\left(\alpha-\frac{\pi}{6}\right)\right\}}=\sin{\left(\omega t+\frac{\pi}{6}\right)}\cos{\left(\alpha-\frac{\pi}{6}\right)}+\cos{\left(\omega t+\frac{\pi}{6}\right)}\sin{\left(\alpha-\frac{\pi}{6}\right)}
    -\frac{\pi}{3}<\alpha<\frac{2}{3}\piのとき,\cos{\left(\alpha-\frac{\pi}{6}\right)}>0であるから,
    \cos{\left(\alpha-\frac{\pi}{6}\right)}=\sqrt{1-\beta^2}
    であり,これを用いると,
    y=\sqrt{1-\beta^2}\sin{\left(\omega t+\frac{\pi}{6}\right)}+\frac{x\beta}{2}\Leftrightarrow y-\frac{x\beta}{2}=\sqrt{1-\beta^2}\sin{\left(\omega t+\frac{\pi}{6}\right)}
    \therefore\left(y-\frac{x\beta}{2}\right)^2=\left(1-\beta^2\right){\mathrm{sin}}^2\left(\omega t+\frac{\pi}{6}\right)=\left(1-\beta^2\right)\left\{1-{\mathrm{cos}}^2\left(\omega t+\frac{\pi}{6}\right)\right\}=\left(1-\beta^2\right)\left(1-\frac{x^2}{4}\right)
    最左辺と最右辺の等式を変形すると,
    \frac{1}{4-4\beta^2}x^2-\frac{\beta}{1-\beta}xy+\frac{1}{1-\beta^2}y^2=1……(答)

    (2)
    \left|z\right|^2(オについて)
    \left|z\right|^2=z\bar{z}=\left(a+bi\right)\left(a-bi\right)=a^2+b^2……(答)

    〇カ~クについて
    \frac{5}{z}=\frac{5\bar{z}}{\left|z\right|^2}=\frac{5a}{a^2+b^2}+\frac{5b}{a^2+b^2}i
    以下では,0\leqq a,0\leqq bの範囲で考える.
    \frac{5}{z}\in Lであるためには,

    が必要.これを図示すると,

    上図斜線部.ただし,境界は原点を除いて全て含む.
    上図より,\left(1,1\right)\left(2,1\right)\left(1,2\right)\left(2,2\right)のみを考えれば十分.
    上の4点の内,z\in Mとなるのは,\left(2,1\right)\left(1,2\right)のときで,そのとき,
    \left|z\right|^2=5……(答)
    また,n\left(M\right)は,他の象限でも同様に考えると,
    \left(\pm2,\pm1\right)\left(\pm1,\pm2\right) (複号任意)の8点で,z\in Mとなることが分かる.
    \therefore n\left(M\right)=8……(答)
    また,実部が最も大きくかつ虚部が正となるのは,\left(2,1\right)のとき.
    \therefore z=2+i……(答)

    (3)
    f\left(g\left(t\right)\right)=f\left(f^{-1}\left(t\right)\right)=t\Leftrightarrow\int_{0}^{g\left(t\right)}e^{y^2}dy=t
    が成立する.両辺をtで微分すると,
    g^\prime\left(t\right)\cdot e^{\left\{g\left(t\right)\right\}^2}=1\Leftrightarrow g^\prime\left(t\right)=e^{-\left\{g\left(t\right)\right\}^2}
    となり,さらに両辺をtで微分すると,
    g^{\prime\prime}\left(t\right)=e^{-\left\{g\left(t\right)\right\}^2}\cdot\left\{-2g\left(t\right)\right\}\cdot g^\prime\left(t\right)=-2g\left(t\right)\cdot e^{-2\left\{g\left(t\right)\right\}^2}
    最右辺がG\left(g\left(t\right)\right)と等しくなるため,
    G\left(x\right)=-2xe^{-2x^2}……(答)

    続きはこちらから

    大問1

    大問2

    大問3

    大問4

    大問5

     

    早慶の過去問を解いてみてまったくわからない・・どのように勉強をしたら良いのか知りたい方はお気軽にこちらからご連絡ください。

【使い方】岡本梨奈の古文ポラリス2|圧倒的に成績を伸ばす方法

2019.08.29

岡本梨奈の古文ポラリス2の特色 岡本梨奈の古文ポラリス2の対象者 古文の読解問題の練習を始めたい人向け、基本的には古文が苦手な人向けの解説 助動詞や単語をある程度覚えてから本書に入ると良いでしょう。品詞分解、古典常識、文学史、文法や重要語句の解説などがしっかり説明されており、初めて読解を本格的に始め

  • …続きを読む
  • 岡本梨奈の古文ポラリス2の特色

    岡本梨奈の古文ポラリス2の対象者

    古文の読解問題の練習を始めたい人向け、基本的には古文が苦手な人向けの解説

    助動詞や単語をある程度覚えてから本書に入ると良いでしょう。品詞分解、古典常識、文学史、文法や重要語句の解説などがしっかり説明されており、初めて読解を本格的に始める人でも取り組みやすい内容になっています。1の続編にあたりますが、レベルはそこまで変わりません。時間がなくて、どちらから一つだけやらないといけない場合であれば、2から始めても大丈夫でしょう。

    岡本梨奈の古文ポラリス2の使い方

    完成までの期間

    1,2ヵ月程度

    この本はあくまで読解の練習用の教材になっています。
    そのため、読み方についての説明はありません。

    なので、まずは『吉野の古文読解入門』のような読解の確認をする教材で読み方を確認してからポラリスに入ってください。

    またどの本でも言えることですが、問題を解くだけでなく解説をしっかり読み込み自分のものにしていきましょう。
    問題数は14題なので1日1~2題ペースでやっていけば短期集中で仕上げることができます。
    ダラダラやらずに期間を決めてがっつりやるのがおすすめです。

早稲田への現代文勉強法おすすめ参考書|偏差値30から早慶圧勝レベルまで効率的に成績を上げる方法

2019.08.28

早慶専門ヒロアカが厳選!! 早稲田のための現代文おすすめ参考書 当塾で使用する参考書の一覧です。生徒の学力に応じてピックアップしていきます。 *すべての参考書を使用するわけではありません。入試までの期間に応じて塾側でピックアップします。独学で本参考書のまとめを見る人は全ての参考書を実施しないよう注意

  • …続きを読む
  • 早慶専門ヒロアカが厳選!! 早稲田のための現代文おすすめ参考書

    当塾で使用する参考書の一覧です。生徒の学力に応じてピックアップしていきます。
    すべての参考書を使用するわけではありません。入試までの期間に応じて塾側でピックアップします。独学で本参考書のまとめを見る人は全ての参考書を実施しないよう注意してください。

    現代文勉強法シリーズをまだ読んでいない人はこちらから

    最速現代文勉強法その1 1文を理解する編

    最速現代文勉強法その2  1段落の理解する編

    最速現代文勉強法その3 要旨を理解する編

    最速現代文勉強法その4 読解処理編

    最速現代文勉強法その5 リーズニング編

    クリックすると参考書の詳細ページに飛ぶことができます。

    ■初歩レベル

    [su_label type="success" class=""]読解理解[/su_label]『出口のシステム中学国語読解』

    [su_label type="warning" class=""]]読解理解[/su_label]『出口のシステム中学国語(公立高校編)』

    [su_label type="warning" class=""]読解理解[/su_label]『基礎からのジャンプアップノート 現代文読解・書き込みドリル』

    [su_label type="warning" class=""]読解単語[/su_label]『コトバはチカラだ

    [su_label type="warning" class=""]漢字[/su_label]『漢字一問一答

    ■基礎| 現代文初級レベル

    [su_label type="warning" class=""]読解理解[/su_label]『現代文のアクセス【基本編】【発展編】』

    [su_label type="black" class=""]読解演習[/su_label]『全レベル問題集 基礎レベル レベル1

    [su_label type="info" class=""]記述読解演習[/su_label]『現代文読解基本ドリル

    [su_label type="info" class=""]記述読解演習[/su_label]『大学入試 全レベル問題集 私大標準レベル』

    ■MARCH合格レベル

    [su_label type="warning" class=""]読解理解[/su_label]『入試現代文へのアクセス発展編』

    [su_label type="warning" class=""]読解理解[/su_label]『現代文読解力の開発講座

    [su_label type="success" class=""]読解演習[/su_label]『全レベル問題集私大上位レベル』

    [su_label type="success" class=""]記述読解理解[/su_label]『上級現代文(1)

    ■早稲田レベル

    [su_label type="info" class=""]読解理解[/su_label]『現代文と格闘する

    [su_label type="info" class=""]読解演習[/su_label]『全レベル問題集現代文私大最難関レベル』

    [su_label type="success" class=""]記述読解演習[/su_label]『上級現代文(2)

    ■早稲田合格レベル

    [su_label type="info" class=""]記述読解演習[/su_label]『得点奪取 現代文

    [su_label type="info" class=""]記述読解演習[/su_label]『全レベル問題集現代文国公立大レベル

    早稲田を目指して成績を圧倒的にあげたいのであれば・・・

    早稲田慶應に合格するために何をしたら良いのか、圧倒的に成績をあげるためにはどうしたら良いのか、カウンセリングでは全てをお伝えします。
    こちらからお申し込みください。

【使い方】岡本梨奈の古文ポラリス1|圧倒的に成績を伸ばす方法

2019.08.28

岡本梨奈の古文ポラリス1の特色 岡本梨奈の古文ポラリス1の対象者 古文の読解問題の練習を始めたい人向け 助動詞や単語をある程度覚えてから本書に入ると良いでしょう。品詞分解、古典常識、文学史、文法や重要語句の解説などがしっかり説明されており、初めて読解を本格的に始める人でも取り組みやすい内容になってい

  • …続きを読む
  • 岡本梨奈の古文ポラリス1の特色

    岡本梨奈の古文ポラリス1の対象者

    古文の読解問題の練習を始めたい人向け

    助動詞や単語をある程度覚えてから本書に入ると良いでしょう。品詞分解、古典常識、文学史、文法や重要語句の解説などがしっかり説明されており、初めて読解を本格的に始める人でも取り組みやすい内容になっています。

    本文の品詞分解を丁寧に解説しているので、確認がしやすいです。
    特に基礎を学ぶ諸学の段階では、品詞が丁寧に書いていないと迷います。

    まずは品詞分解をしてみて、その確認をしていくのが良いでしょう。

    岡本梨奈の古文ポラリス1の使い方

    完成までの期間 2〜3週間程度

    この本はあくまで読解の練習用の教材になっています。そのため、読み方についての説明はありません。
    なので、まずは『吉野の古文読解入門』のような読解の確認をする教材で読み方を確認してからポラリスに入ってください。

    どの本でも言えることですが、問題を解くだけでなく解説をしっかり読み込み自分のものにしていきましょう。

    また、文章の中でどのように文法が使われているのかを知るために品詞分解をしていくのが良いでしょう。

【使い方】数学Ⅰ・A 入門問題精講|圧倒的に成績を伸ばす方法

2019.08.27

数学基礎問題精講1Aの特色 数学基礎問題精講1Aの対象者 数学Ⅰ・Aを基礎レベルから勉強したい人 偏差値45~55程度 基礎問題、標準問題精講に続く、入門編のバージョンです。 一見ただの問題集型の教材に見えますが、説明はほかの精講シリーズと比べても遥かに詳しく書いてあります。 二次関数については関数

  • …続きを読む
  • 数学基礎問題精講1Aの特色

    数学基礎問題精講1Aの対象者

    数学Ⅰ・Aを基礎レベルから勉強したい人 偏差値45~55程度

    基礎問題、標準問題精講に続く、入門編のバージョンです。
    一見ただの問題集型の教材に見えますが、説明はほかの精講シリーズと比べても遥かに詳しく書いてあります。

    二次関数については関数の定義から説明を行なっています。

    数学基礎問題精講1Aの使い方

    完成までの期間 1ヶ月程度

    未習の人は説明を読んでから問題を、既習の場合が問題を解いてから説明を読みましょう。
    本書のレベルの問題が解けないと受験勉強に移行することは難しいのでスラスラ解けるようになるまで徹底的に取り組んでください。

【使い方】全レベル問題集現代文6 難関国公立大レベル|圧倒的に成績を伸ばす方法

2019.08.26

参考書の特色 対象者 難関国立大学を受験する文系 偏差値60~70程度 本書は現代文の全レベル問題集シリーズの最終巻です。本シリーズは全巻やる必要は必ずしもありませんが、全てやり終えれば相当な実力がつくでしょう。なお、国立対策用なので当然記述問題が含まれます。基本的に国立を目指す人向けではありますが

  • …続きを読む
  • [toc]

    参考書の特色

    対象者

    難関国立大学を受験する文系 偏差値60~70程度

    本書は現代文の全レベル問題集シリーズの最終巻です。本シリーズは全巻やる必要は必ずしもありませんが、全てやり終えれば相当な実力がつくでしょう。なお、国立対策用なので当然記述問題が含まれます。基本的に国立を目指す人向けではありますが、記述問題の対策をしたい私大受験生が取り組むのもありです。

    使い方

    完成までの期間

    2ヶ月程度

    問題を解く→答え合わせ→正解した問題含め解答根拠の確認→再度文章を読み、解説の思考プロセスを自分自身で再現ができるかを確認。おおよそ上記の流れで1セットです。

    1ランク成績を上げる使い方

    上記の流れに加えて文章の要約を加えるととても効果的です。100~200語程度でしっかり本文をまとめられれば完璧です。要約が出来ない場合は理解できていない部分があるということなので、再度本文を確認するようにしましょう。
    余裕があれば意味段落にわけてそれぞれの要旨も書くとなお良いです。

【使い方】新マンガゼミナール「源氏」でわかる古典常識|圧倒的に成績を伸ばす方法

2019.08.24

参考書の特色 対象者 古典常識を身に付けたい人、源氏物語の読解に苦戦している人向け 本書は源氏物語を題材に漫画で古典常識を身につけることのできる参考書です。本書を一通りやれば受験勉強に必要な古典常識は一通り網羅できます。また、源氏物語は文章の難易度が高いのであらましを理解しておくといざ出題されたとき

  • …続きを読む
  • 参考書の特色

    対象者

    古典常識を身に付けたい人、源氏物語の読解に苦戦している人向け

    本書は源氏物語を題材に漫画で古典常識を身につけることのできる参考書です。本書を一通りやれば受験勉強に必要な古典常識は一通り網羅できます。また、源氏物語は文章の難易度が高いのであらましを理解しておくといざ出題されたときに助かります。

    使い方

    完成までの期間

    1週間程度

    基本的に読むだけで十分です。しっかり覚えるのであれば別冊の解説の内容を覚えましょう。

【使い方】佐々木隆宏の整数問題が面白いほどとける本|圧倒的に成績を伸ばす方法

2019.08.24

参考書の特色 対象者 整数問題の訓練をしたい人向け 本書を始めるにはまずセンター試験で8割以上取れる力は最低限必要です。 整数の分野は差のつく分野ではありますが、センター試験レベルで苦戦するのであればそちらの勉強をした方が費用対効果は高いです。高度な内容も含むので基礎力がないとまず挫折することになり

  • …続きを読む
  • [toc]

    参考書の特色

    対象者

    整数問題の訓練をしたい人向け

    本書を始めるにはまずセンター試験で8割以上取れる力は最低限必要です。
    整数の分野は差のつく分野ではありますが、センター試験レベルで苦戦するのであればそちらの勉強をした方が費用対効果は高いです。高度な内容も含むので基礎力がないとまず挫折することになります。本書の内容は高校数学の集大成といえるでしょう。
    整数問題でよく出るパターンはほぼ網羅されていますので本書を終えれば自信をもって数学の受験に臨めます。

    使い方

    完成までの期間

    1~2ヶ月程度

    整数問題に取り組むのが初めてなら順番に進めましょう。既に多少できるのであれば苦手な分野のみに絞ったり、巻末の問題をいきなり解いていくやり方でも良いでしょう。
    整数問題は大抵の場合最後に取り組むことになるので無理に全部をやる必要はありません。過去問をやる方を優先してください。

【使い方】漢字一問一答 完全版 (東進ブックス)|圧倒的に成績を伸ばす方法

2019.08.10

参考書の特色 対象者 漢字を得点源にしたい人 漢字はどのテストでもほぼ必ず問われますが、漢字の数を考えると闇雲に勉強するのは現実的ではありません。 しかし本書はかなり薄いにも関わらず、センター試験の漢字のカバー率100%を誇っており、これを一冊仕上げればそれ以上漢字の勉強をしなくても大丈夫です。 使

  • …続きを読む
  • [toc]

    参考書の特色

    対象者

    漢字を得点源にしたい人

    漢字はどのテストでもほぼ必ず問われますが、漢字の数を考えると闇雲に勉強するのは現実的ではありません。
    しかし本書はかなり薄いにも関わらず、センター試験の漢字のカバー率100%を誇っており、これを一冊仕上げればそれ以上漢字の勉強をしなくても大丈夫です。

    使い方

    使用期間

    1~3ヶ月

    漢字の勉強は基本的には作業なので勉強を始める際のトリガーにしてしまうのがオススメです。毎回勉強をするときに漢字から入ると、勉強のやる気があまり出ないときでも、漢字練習ですぐにスイッチが入るようになります。

    現代文の勉強などはかなり疲れるので心理的負担が大きいですが、まずは漢字だけと思えば勉強にも取り組みやすくなります。
    やる気というのはやらなければ出てこないので、漢字練習はかなりお手頃なやる気スイッチです。