偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 資料請求
  • カウンセリング

v-tグラフとその意味を0から理解する(変位、速度、加速度とは?その2)

2020.05.30

物体の運動について考えるとき、v–tグラフをかくととても便利です! このページでは、v–tグラフの描き方、意味を説明していきます。 v-tグラフの意味と読み取り方を中心に~ 力学の最初の方に出てくるv – tグラフについて苦手な方が多いのでまとめてみます。 まず以

  • …続きを読む
  • [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]物理、高校に入ってから数学みたいになってきてよく分からない。[/speech_bubble] [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="山田さん"]えっどういうこと?[/speech_bubble] [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]この間v-tグラフとかでてきたじゃん〜[/speech_bubble] [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="山田さん"]あれね、どうしてあんなグラフとか描く必要があるのかしら。[/speech_bubble]

    物体の運動について考えるとき、vtグラフをかくととても便利です!
    このページでは、vtグラフの描き方、意味を説明していきます。

    v-tグラフの意味と読み取り方を中心に~

    力学の最初の方に出てくるv tグラフについて苦手な方が多いのでまとめてみます。

    まず以下のことを理解して覚えてください

    v tグラフの傾き:加速度を表す。

    v tグラフの面積:移動距離を表す。

    まず①について説明します。等加速度運動の式v = v0 + atにおいて、時間tについてのグラフと見ると傾きがaだとわかると思います。
    (y = ax +bでaは傾きですよね)

    また物理において時間t > 0になることが通常ないので、たいていの場合はt = 0から始まります。そのため切片v0は初速度だということもわかります
    (y = ax + bでbは切片ですよね)

    ②については小学生の時にこのようなことを考えませんでしたか?

    このとき(道のり) = (速さ) × (時間)が成り立ちました。v tグラフでは縦軸速さ、横軸時間tなので、今回のようなvが一定のグラフにおいて

    (面積) = (縦) × (横) = (速さ) × (時間)   (1)

    が成り立ちます。

    速さ一定ではなく時間変化するとしても考える時間幅をとても小さくしたら(1)式は成立します。

    これは数学的には積分の考えです。実際に

                                x=∫ v dt

    がこのテーマの裏には隠れています。

    グラフの面積の正負については、

    グラフの面積>0:正方向へ移動距離

    グラフの面積<0:負方向への移動距離

    を表しています。

    例えば下のグラフではグラフの右の図(青いボール)のような運動を表しています。

        

     VTグラフを読み取る

    物体の運動において、大事な要素は3つあります。

    位置x、速度v、加速度aの3つです。
    これらは、運動の種類によっては時間変化します。
    それを分かりやすくするためにグラフにするのです。

    つまり、vtグラフは横軸に時間、縦軸に速度を取ったもので、速度vと時間tがどのような関係にあるかを示したグラフになります。

    また、vtグラフの面積を計算すると、その値は変位を表します。

    そして、このグラフの傾きは加速度aを表します。グラフが出てきたら以上の2つの値が決定します。

    [plus url1="https://hiroacademia.jpn.com/blog/5minutes/5minbutsu/enshinryoku/』" title1="0から理解する遠心力の理屈" url2="https://hiroacademia.jpn.com/blog/5minutes/5minbutsu/kepler/" title2="0からのケプラーの法則の理解の仕方" url3="https://hiroacademia.jpn.com/blog/5minutes/5minbutsu/hennisonoiti/" title3="ベクトルとスカラーの違いは?" url4="https://hiroacademia.jpn.com/blog/5minutes/5minbutsu/toukasokusonosann/" title4="等速度運動、等加速度運動の3つの公式"]

    [ad doc=""]

0からの定滑車、動滑車の理解の仕方(運動方程式その4)

2020.05.30

ページ目次0からの定滑車、動滑車の理解の仕方定滑車とは?動滑車とは?定滑車、動滑車まとめ 0からの定滑車、動滑車の理解の仕方 定滑車とは? 定滑車とは、滑らかに動く固定された滑車です。 2つの物体をつなぐので、2つの物体は同じ加速度で進みますが、向きは異なるので注意しましょう。 運動方程式は 斜面の

  • …続きを読む
  • 0からの定滑車、動滑車の理解の仕方

    [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]動滑車って物体が2つでてきて頭がパンクしそうだ…。[/speech_bubble] [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="山田さん"]なんで加速度が違うんだ?[/speech_bubble] [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]しかも座標もどうとればいいんだ?[/speech_bubble] [toc]

    定滑車とは?

    定滑車とは、滑らかに動く固定された滑車です。

    2つの物体をつなぐので、2つの物体は同じ加速度で進みますが、向きは異なるので注意しましょう。

    運動方程式は

    斜面の物体M:Ma=Mgsinθ−T

    物体m:ma=Tmg

    となるので、2つの式を足すことで、

    (m+M)a=Mgsinθ-mg

    \therefore a= \frac{M \sin \theta -m}{M+m}g

    となります。

    動滑車とは?

    動滑車は固定されていないので定滑車よりも複雑になります。

    図からも分かるように、動滑車に繋がった物体を距離動かすのに、2引っ張る必要があります。しかし、その力は1/2で済みます。

    物体Aの質量を7m、Bの質量を4とすると、物体Aが下降、Bが上昇したとします。

    すると、次のように加速度を求めることができます。

    まず、物体Aが時間tで2lだけ落下したとすると、Bはlだけ上昇します。

    このとき、Aについて:2l= \frac{1}{2} a_{1}t^{2}

    Bについて: l=\frac{1}{2} a_{2}t^{2}よって、2a=aという関係式が求まります。

    次に物体の加速度を求めます。

    物体Aについての運動方程式:7mgT1=7ma1

    物体Bについての運動方程式:T2-4mg=4ma2

    動滑車について:2T1T2=0

    これらを解き、2a=aを利用すると、

    a_{1}=\frac{5}{8} gが求まります。

    このように動滑車は一般に変位、速さ、加速度は半分になります。これを覚えておくとよいでしょう。

    また、A,B,動滑車についてそれぞれ別々の運動方程式を立てることを忘れないようにしましょう。

    定滑車、動滑車まとめ

    動滑車と定滑車の理解はできましたか。
    学校ではこのような基本的な言葉の定義はなかな教えてくれない部分でもありますので、、
    今回の記事で理解ができたのであれば幸いです。

    [plus url1="https://hiroacademia.jpn.com/blog/5minutes/5minbutsu/enshinryoku/』" title1="0から理解する遠心力の理屈" url2="https://hiroacademia.jpn.com/blog/5minutes/5minbutsu/kepler/" title2="0からのケプラーの法則の理解の仕方" url3="https://hiroacademia.jpn.com/blog/5minutes/5minbutsu/hennisonoiti/" title3="ベクトルとスカラーの違いは?" url4="https://hiroacademia.jpn.com/blog/5minutes/5minbutsu/toukasokusonosann/" title4="等速度運動、等加速度運動の3つの公式"]

    [ad doc=""]

0から理解する遠心力の理屈(円運動その3)

2017.02.19

遠心力とは何でしょうか。身近な例だと遊園地にあるコーヒーカップに乗っているときに、乗っている人は外側に引っ張られる力を感じます。 これが遠心力です。 今回これを例に遠心力について学んでみましょう。 遠心力を理解するには、慣性力がまずわかっていなければなりません。 まず慣性力とは、運動している人が加速

  • …続きを読む
  • 遠心力とは何でしょうか。身近な例だと遊園地にあるコーヒーカップに乗っているときに、乗っている人は外側に引っ張られる力を感じます。
    これが遠心力です。
    今回これを例に遠心力について学んでみましょう。

    遠心力を理解するには、慣性力がまずわかっていなければなりません。
    まず慣性力とは、運動している人が加速運動をしている際に加速度と逆方向に力が働きこれを慣性力といいます。
    遠心力は円運動における慣性力のことを言います。

    遠心力を簡単に言いえば、向心力と大きさが等しく、反対向きにはたらく力のことです。

    図1

    遠心力と向心力で考える違いは、前者が力のつり合いで考えるのに対し、後者は運動方程式で考えるというところです。
    そして遠心力のややこしいところは式のみかけ上は円運動の運動方程式と変わらないので(当たり前ですけど)、そのため自分がどっちの立場で考えているのかを区別して問題を解きましょう。

    最後に例題を使って、遠心力の理解を深めましょう。


    問:

    図2のような、長さ l の糸の一端を固定し、他端に質量 m

    のおもりをつるし、このおもりを水平面内で角速度ωで等速

    円運動させたときの円錐振子運動について、以下の問いに答

    えよ。

    (1)糸の張力をm,gθを用いて表せ。

    (2)物体水平方向について、遠心力を考えた場合

    と運動方程式で考えた場合で両者が一致することを確認せよ。

    ただし鉛直線と糸とのなす角を θ  、重力加速度を g  とする。

    図2

    解:

    図3

    (1)図3において力のつり合いから、

    mg=Tcosθ

     T=\frac{mg}{\cos \theta}

    (2)

    遠心力:

    遠心力をmrω²で力のつり合いより

    mr\omega ^{2} = T \sin \theta=mg\tan \theta

    運動方程式:

    向心力がTsinθで円運動の方程式から

     ma=mr\omega ^{2} = T \sin \theta=mg\tan \theta

    よって両者は一致した。

0からのケプラーの法則の理解の仕方(万有引力その3)

2017.02.18

ケプラーの法則は全部で3つあります。 ①惑星は太陽を一つの焦点とする楕円軌道を描く ②惑星と太陽間の線分が単位時間に描く面積は一定(S1=S2、面積速度一定の法則) ③惑星の公転周期の2乗と軌道の長半径の3乗の比は一定(a2/T3=定数) ①の意味するところは惑星の軌道が円ではなく楕円であり(実際の

  • …続きを読む
  • ケプラーの法則は全部で3つあります。

    ①惑星は太陽を一つの焦点とする楕円軌道を描く

    ②惑星と太陽間の線分が単位時間に描く面積は一定(S1=S2、面積速度一定の法則)

    ③惑星の公転周期の2乗と軌道の長半径の3乗の比は一定(a2/T3=定数)

    ①の意味するところは惑星の軌道が円ではなく楕円であり(実際の入試問題では円軌道が

    多いですが)、太陽の位置は楕円の中心ではなく焦点の1つであるということです。

    ※二つの焦点が一致したとき楕円は円になります。

    ②は、太陽に近いところでは惑星は速度を増し、太陽から遠いところでは惑星は速度を落とすことを意味しています。
    これは、惑星が軌道上を移動する際の面積速度が一定である事を意味し、「面積速度一定の法則」と呼ばれる所以です

    ③は、公転周期の長さは楕円軌道の長半径のみに依存し、楕円軌道の離心率に依存しないので、楕円軌道の長半径が同じであれば、円運動でも楕円運動でも周期は同じになるということを言っています。

    ※楕円や離心率については数学Ⅲで詳しくは勉強します。
    (高校物理という意味では離心率など考えなくてかまいません)

    実はケプラーの法則から万有引力の式を導出ができるので、最後に示します。

    まず計算の簡略化のため円軌道であると仮定します。
    (実際に太陽系の惑星は円軌道に近いです)そうすることで円運動で出てきた公式がそのまま使えます。ある惑星と太陽間の引力は

    F=mr\omega^{2}=mr(\frac{2\pi}{T})^{2}=\frac{4\pi^{2}mr}{T^{2}}・・・イ

    ケプラーの第三法則で今回半長軸aと半径rは等しいので

    \frac{T^{2}}{a^{3}}=\frac{T^{2}}{r^{2}}=k

    \therefore T^{2}=kr^{3}

    これをイに代入すると

    F=\frac{4\pi^{2}mr}{kr^{3}}=\frac{4\pi^{2}}{k}\bullet \frac{m}{r^{2}}=K\bullet\frac{m}{r^{2}}

    \frac{4\pi^{2}}{k}は定数なので、Kとおきました。

    よって惑星間の引力の大きさは、惑星の質量に比例し、太陽からの距離の2乗に反比例するということが示せました。

【物理】万有引力の問題(万有引力その4)

2017.02.18

問:地球の半径R、自転周期T、地表面から高さhの位置にいる人工衛星について以下の問いに答えよ。 (1)人工衛星の速さv0をR、h、gを使って表せ (2)人工衛星が静止しているときの高さhを求めよ (3)人工衛星が地表すれすれで運動しているときの速さv1を求めよ (4)人工衛星の速さを早くしていくと地

  • …続きを読む
  • 問:地球の半径R、自転周期T、地表面から高さの位置にいる人工衛星について以下の問いに答えよ。

    (1)人工衛星の速さv0Rを使って表せ

    (2)人工衛星が静止しているときの高さを求めよ

    (3)人工衛星が地表すれすれで運動しているときの速さv1を求めよ

    (4)人工衛星の速さを早くしていくと地球の重力圏から脱出し、太陽の周りをまわる。このときの速さv2を求めよ。


    (1)円運動の運動方程式より

    m\frac{v^{2}}{R+h}=G\frac{Mm}{(R+h)^{2}}

     \therefore v_{0}=\sqrt{\frac{GM}{R+h}}=\sqrt{\frac{gR^{2}}{R+h}}・・・①

    最後の式変形はmg=\frac{Gmm}{R^{2}}よりGMR2を使いました。

     

    (2)衛星の周期は

    \frac{2\pi(R+h)}{v}=2\pi(R+h)\sqrt{\frac{R+h}{gR^{2}}}

    これが地球の周期Tと等しいので(相対速度が0になるので止まって見える)

    T=2 \pi (R+h) \sqrt{\frac{R+h}{gR^{2}}}

    h = \sqrt [3] {\frac{gR^{2}T^{2}}{4\pi^{2}}}-R

    例えばR=6400 km,=9.8m/s2,T=24時間=86400秒を代入すると、hは約36000 kmとなります。

     

    (3)①においてh=0とすればいいから

    v_{1}=\sqrt{gR}

    ちなみに実際に値を代入するとv1=7.90 m/sです。

    (4)地球の重力圏を抜けるということは、無限に遠い点において、速度が0以上であれば、物体は地球の重力圏から抜け出すことができます。
    よって、万有引力の位置エネルギーを考えてエネルギー保存則を立てると

    \frac{1}{2}mv_{2^{2}}-G\frac{Mm}{R}=0

    \therefore v_{2}=\sqrt{\frac{2GM}{R}}=\sqrt{2gR}=\sqrt{2}gR

    となります。なお計算すると11.2 km/sとなります。

    ここで取り上げた問題は大学入試でよく出るのでよく復習しておきましょう。

【物理】万有引力の位置エネルギー(万有引力その2)

2017.02.17

前回に引き続き万有引力について学んでいきましょう。 前回を読んでない方はこちら確認下さい。 まず以下の問題を考えてみましょう。 問:地球上での重力と月での重力の比を求めよ。ただし G= 6.7×10-11 N⋅m2/kg2 地球の半径RE 地球での重力gE 地球の質量ME 月の半径RM=0.25RE

  • …続きを読む
  • 前回に引き続き万有引力について学んでいきましょう。

    前回を読んでない方はこちら確認下さい。

    まず以下の問題を考えてみましょう。

    問:地球上での重力と月での重力の比を求めよ。ただし

    G= 6.7×10-11 N⋅m2/kg2

    地球の半径RE

    地球での重力gE

    地球の質量ME

    月の半径RM=0.25RE

    月の質量MMME/100とする。


    解)月での重力加速度をgMとして、

     \frac{mg_{M}}{mg_{E}}=\frac{G\frac{mM_{E}}{R_{M}^{2}}}{G\frac{mM_{E}}{R_{E}^{2}}}=(\frac{R_{E}}{R_{M}})^{2}\frac{M_{M}}{M_{E}}=\frac{4\times4}{100}=0.16\fallingdotseq \frac{1}{6}

    よって月での重力は地球の6分の1であることがわかります。

    万有引力で一つ注意したいのは考えている二つの物体が質点であるということです。

    そのため、物体の大きさををちゃんと考慮した場合は少し異なるので注意しましょう。

    ◎万有引力の位置エネルギー

    万有引力の力がわかったので、次はエネルギーを求めてみましょう。
    ある点AからとあるB点までの物体が受けた仕事を考えます。
    ここでは積分を使うのでわかりにくいと思った方は、結果だけ覚えていてもかまいません。

    積分を使った方法

    質量Mの物体から距離離れた質量の物体を無限遠方までもっていくことを考えます。この時の仕事Wをとし、距離の位置エネルギーをUとすると

    U+WU

    ここで無限遠方を位置エネルギーの基準に考えるとU=0とできるので、

    U=-W

    とできます。つぎに微小距離dr移動させたときのWを求めていきます。
    万有引力の式をグラフにすると以下のようになります。
    (A点の座標をra、B点の座標をrbとする。)

    仕事量はこのグラフの面積になることから

    W=\int_A^B G\frac{Mm}{r^{2}}=\frac{GMm}{r_{A}}-\frac{GMm}{r_{B}}

    rArと書きrB→∞にすると\frac{GMm}{r}となります。よって万有引力の位置エネルギーは

    Ur=-W=-GMm/rとなります。

    基準を無限遠点にしない場合は万有引力による位置エネルギーの式に定数項が残ってしまいます.

    では最後になぜ無限遠方を位置エネルギーの基準にしたのでしょうか?
    一言でいえば簡略化のためです。

    詳しく見ていきましょう。

    地球からの距離 のときの位置エネルギーU()が

    U(r) = -GMm/r + C(定数)・・・①

    と書けたとき、地球の表面 r = Rをエネルギーの基準に取る(U(R) = 0 )とすると,

    0 = -GMm/R + CC = GMm/R・・・②

    となり,位置エネルギーは

    U(r) = -GMm/r + GMm/R・・・③

    となります.

    一方,無限遠点で U(∞) → 0 となるように基準をとると,この場合の位置エネルギーは

    U(r) = -GMm/r・・・④

    となり③の(GMm/R)という定数項が消えます。

    また,位置 r = rAr = rB という二点間の位置エネルギーの差を求めるとき

    U(rB) – U(rA) = (-GMm/rB + C) – (-GMm/rA + C) = -GMm/rB + GMm/rA

    となって,結局定数項 C に依存しないことがわかります。

    そのため、最初から定数項Cが消えるような基準(無限遠点)を選んだというわけです

    個々の話は上の文章の破線部に対応しています。

【物理】万有引力(万有引力その1)

2017.02.16

万有引力とは、万物の間には引力が有るという意味です。 まずは以下の式を理解しておきましょう。 (G:万有引力定数、6.67×10-11 N・m2/kg2) この式の特徴は ・質量に比例する ・距離の二乗に反比例する ・働く力は引力 です。普段私たちが感じている重力はこれのことです。 ところで実生活に

  • …続きを読む
  • 万有引力とは、万物の間には引力が有るという意味です。

    まずは以下の式を理解しておきましょう。

    F=G\frac{Mm}{r^{2}}
    (G:万有引力定数、6.67×10-11 N・m2/kg2)

    この式の特徴は

    ・質量に比例する

    ・距離の二乗に反比例する

    ・働く力は引力

    です。普段私たちが感じている重力はこれのことです。

    ところで実生活において万有引力を感じているのでしょうか。
    実際には重力以外は感じられません。

    これは例えば60 kg人同士が1 m離れたときに働く万有引力は約2.4×10-7 Nととても小さい為です。
    ではどういったときに万有引力を考えればいいのでしょうか。
    それは、星と星との間に働く力などを考えるときです。

    ここで星の重さはどのくらいなのでしょうか?

    Q:地球の質量は?(重力加速度g=9.8 kg・m/s2,地球の半径6.4×106 m)

    A:mg=G\frac{Mm}{r^{2}}

    より

    M=\frac{gR^{2}}{G}≒6×1024 kg

    以上の結果からわかるよう、に非常に大きい質量でないと万有引力の影響がないことがわかります。

    実はここで述べた式において電磁気で出てくるクーロンの法則とそっくりなので、電磁気を習い始めたら双方を比較しながら理解していきましょう。

【物理】跳ね返り係数の具体例(跳ね返り係数その2)

2017.02.15

何問か簡単な例題を紹介します。 例題1 物体が速さ20m/sで壁に衝突した。 その後、12m/sで跳ね返ったとき、跳ね返り係数はいくらか。 ▶解答 公式に入れるだけです。跳ね返り係数は12÷20=0.60となります。 例題2 図のように2つの物体が衝突したとき、衝突後の速度をそれぞれ求

  • …続きを読む
  • [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]跳ね返り係数、やっと理解できた![/speech_bubble] [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="山田さん"]でも実際の問題ででてきたら解けるか不安だな。[/speech_bubble]

    何問か簡単な例題を紹介します。

    [toc]

    例題1

    物体が速さ20m/sで壁に衝突した。
    その後、12m/sで跳ね返ったとき、跳ね返り係数はいくらか。

    ▶解答

    公式に入れるだけです。跳ね返り係数は12÷20=0.60となります。

    例題2

    図のように2つの物体が衝突したとき、衝突後の速度をそれぞれ求めよ。

    物体Aの質量は2.0kg、物体Bの質量は3.0kgとし、跳ね返り係数は0.50とする。

     

    運動量は保存されるので、 2.0✕6.0+3.0✕(−4.0)= 2.0vA+3.0vB

    跳ね返り係数=0.50より、

    0.50=ー(vA−vB)/ 6.0-(-4.0)

    この2つの式と解くと、vA=−3.0m/s 、vB=2.0m/sとなります。

    ここで大事なのは運動量保存が成り立つということです。

    【参考】運動量保存の法則とは?

【物理】これで苦手克服! 単振動(その1)

2017.02.15

〇単振動とは? 単振動は受験生が苦手とする人が多いですがコツさえつかめたら、むしろ簡単な部類に入ります。  そのため、単振動とは単純な振動のことだという人もいるぐらいです。 皆さんもこれを機に単純な振動と思えるように頑張っていきましょう。 単振動で重要なことは復元力が働いているということです。 たと

  • …続きを読む
  • 〇単振動とは?

    単振動は受験生が苦手とする人が多いですがコツさえつかめたら、むしろ簡単な部類に入ります。 
    そのため、単振動とは単純な振動のことだという人もいるぐらいです。

    皆さんもこれを機に単純な振動と思えるように頑張っていきましょう。

    [toc]

    単振動で重要なことは復元力が働いているということです。

    たとえばばねが伸びようとすると縮もうとし、ばねが縮むと伸びようとします。
    これが復元力です。

    ところで伸びると縮むという逆の現象が起きています。
    つまり位置に関する情報と力の向きの情報が逆の関係になっています。

    これは数学的にはマイナスでつながる関係で書けることが定性的に考えられます。

    よってこれを数式で書くと(F:力、x:位置、)

    F = -Kx

    逆にこの式で書けるものは単振動を表すということがわかります。

    ばねの運動の場合も確かにこうなっていますね.。

    つぎに単振動の動きを実際に考えてみましょう。数式での定式化は次でやることにして、ここではイメージのみ考えてみます。

    まず振幅Aの単振動している物体(質量m)をかんがえます。

    そして、自然長の時の位置を座標の原点に置きます
    ここでは位置、速度と加速度を考えてみます。

    *自然長のときとは? 
    バネに何も負荷がかかってない状態のときのことを指します

    〇位置

    当然伸びきったもしくは縮みこんだ両端で距離は最大になります。座標的には図でいうところの右側で最大、左側で最小です。

    〇速度

    伸びきったもしくは縮みこんだ瞬間は速度はゼロになります。そして力学的エネルギー保存則を考えると原点で最大になることがわかります。(原点で考えると\frac{1}{2}kx^{2}=\frac{1}{2}mv^{2},原点意外で考えると

     \frac{1}{2}kx^{2}=\frac{1}{2}mv^{2} +\frac{1}{2}kx^{'2} となるためです)

    〇加速度

    原点では力が働かないため加速度はゼロです。一方力と加速度は比例するため、振動の両端では加速度の大きさは最大になります。図でいうと右側で最小(力の向きと加速度の向きが同じだからです。)で左側で最小になっています。

     

    ところで、ばねの動きは理想的な場合一度振動させたらずっと運動し続けます。

    その運動は周期的な運動をし、位置と加速度は両端で大きさは最大になりますが、大小はそれぞれ左右逆になっています。
    そして周期的な運動を表すときに非常に相性がいい関数があります。それは何でしょうか?

    答えは次回に譲るとします。

【物理】跳ね返り係数とは?(跳ね返り係数その1)

2017.02.14

跳ね返り係数とは 跳ね返り係数とは、物体が衝突して跳ね返ったあとに速度が元の何倍になって逆向きに運動するようになるかを表す値です。 このように定義されます。 2つの物体の場合においてvb=0とすると上の式がでてきます。 跳ね返り係数eは0≦e≦1の値を取り、 e=1のときは(完全)弾性衝突 0<e<

  • …続きを読む
  • [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]跳ね返り係数の公式覚えづらいし、よくわからない。[/speech_bubble] [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="山田さん"]しっかり理解できればすぐ覚えられるよ![/speech_bubble]

    跳ね返り係数とは

    跳ね返り係数とは、物体が衝突して跳ね返ったあとに速度が元の何倍になって逆向きに運動するようになるかを表す値です。

    このように定義されます。

    2つの物体の場合においてv=0とすると上の式がでてきます。

    跳ね返り係数eは0≦e≦1の値を取り、

    e=1のときは(完全)弾性衝突

    0<e<1のときは非弾性衝突

    e=0のときは完全弾性衝突 と分類されます。

    また、弾性衝突のときは跳ね返たあとも速度は同じということを意味するので、力学的エネルギーは保存されます。
    これ以外の場合では衝突する際にエネルギーを失うので力学的エネルギー保存則は成り立ちません。

    完全弾性衝突の場合は跳ね返らずに止まってしまいます。


  • 偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 早稲田校舎 : 〒162-0045
    東京都新宿区馬場下町9-7 ハイライフホーム早稲田駅前ビル4階
    TEL: 03-6884-7991
    営業時間: 月〜土 9:00-21:30 
  • Facebook Twitter
    Page Top

Copyright © BETELGEUSE corporation All Rights Reserved.