偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 資料請求
  • カウンセリング

2016年早稲田大学商学部|過去問徹底研究 大問3

2019.09.30

方針の立て方 簡単にでも作図をすることで題意とつかめ,方針も得られる. (1) 基本問題であるため,特筆事項はない.角度に関する情報が何も問題文で与えられていないため,余弦定理を用いて角度の情報を得ることを考える. (2) 実際に作図することで,全ての三角形が合同であることが分かる.これを利用すると

  • …続きを読む
  • 方針の立て方
    簡単にでも作図をすることで題意とつかめ,方針も得られる.
    (1)
    基本問題であるため,特筆事項はない.角度に関する情報が何も問題文で与えられていないため,余弦定理を用いて角度の情報を得ることを考える.
    (2)
    実際に作図することで,全ての三角形が合同であることが分かる.これを利用すると,\triangle\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{2}に着目するのが有効だと分かる.後は余弦定理を用いればよいので,余弦定理に必要な\cos{\angle\mathrm{A}_\mathrm{2}\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{0}}の情報を求める問題に帰着できる.(※\triangle\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{2}は二等辺三角形であるから,頂角の二等分線を引くことで求める解法も使える.)
    (3)
    これも試しに\mathrm{A}_\mathrm{3}まで作図してみると,本解答の図のように,ジグザグになっていることが分かる.

    解答例
    (1)

    左図のように,線分\mathrm{A}_0\mathrm{A}_1と直線\mathrm{C}_0\mathrm{B}_0の交点を\mathrm{A}_\mathrm{H}とする.すると,
    \mathrm{A}_0\mathrm{A}_\mathrm{H}=\mathrm{A}_0\mathrm{C}_0\sin{\angle\mathrm{A}_\mathrm{0}\mathrm{C}_\mathrm{0}\mathrm{B}_\mathrm{0}}
    である.\mathrm{\triangle}\mathrm{A}_\mathrm{0}\mathrm{C}_\mathrm{0}\mathrm{B}_\mathrm{0}に余弦定理を用いると,
    {\mathrm{A}_\mathrm{0}\mathrm{B}_\mathrm{0}}^2={{\mathrm{C}_\mathrm{0}\mathrm{A} }_\mathrm{0}}^2+{\mathrm{B}_\mathrm{0}\mathrm{C}_\mathrm{0}}^2-2\cdot{\mathrm{C}_\mathrm{0}\mathrm{A} }_\mathrm{0}\cdot{\mathrm{B}_\mathrm{0}\mathrm{C} }_\mathrm{0}\cos{\angle\mathrm{A}_\mathrm{0}\mathrm{C}_\mathrm{0}\mathrm{B}_\mathrm{0}}\bigm\Leftrightarrow5^2=8^2+7^2-2\cdot8\cdot7\cos{\angle\mathrm{A}_\mathrm{0}\mathrm{C}_\mathrm{0}\mathrm{B}_\mathrm{0}}\Leftrightarrow\cos{\angle\mathrm{A}_\mathrm{0}\mathrm{C}_\mathrm{0}\mathrm{B}_\mathrm{0}}=\frac{11}{14}
    であるから,\sin{\angle\mathrm{A}_\mathrm{0}\mathrm{C}_\mathrm{0}\mathrm{B}_\mathrm{0}}=\frac{5\sqrt3}{14}
    \therefore\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{H}=8\cdot\frac{5\sqrt3}{14}=\frac{20\sqrt3}{7}
    \therefore\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{1}=2\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{H}=2\cdot\frac{20\sqrt3}{7}=\frac{40\sqrt3}{7}……(答)

    (2)

    左図で全ての三角形は合同である.
    よって,\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{1}=\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{2}=\frac{40\sqrt3}{7}である.
    また,\angle\mathrm{B}_\mathrm{1}\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{2}=\angle\mathrm{B}_\mathrm{0}\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{0}より,
    \angle\mathrm{A}_\mathrm{2}\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{0}=\angle\mathrm{B}_\mathrm{1}\mathrm{A}_\mathrm{1}\mathrm{B}_\mathrm{0}=2\angle\mathrm{C}_\mathrm{0}\mathrm{A}_\mathrm{1}\mathrm{B}_\mathrm{0}=2\angle\mathrm{C}_\mathrm{0}\mathrm{A}_\mathrm{0}\mathrm{B}_\mathrm{0}
    である.よって,
    \cos{\angle\mathrm{A}_\mathrm{2}\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{0}}=\cos{2\angle\mathrm{C}_\mathrm{0}\mathrm{A}_\mathrm{0}\mathrm{B}_\mathrm{0}}=1-2{\mathrm{sin}}^2\angle\mathrm{C}_\mathrm{0}\mathrm{A}_\mathrm{0}\mathrm{B}_\mathrm{0}
    ここで,\triangle\mathrm{A}_\mathrm{0}\mathrm{C}_\mathrm{0}\mathrm{B}_\mathrm{0}に正弦定理を用いると,
    \frac{\mathrm{C}_\mathrm{0}\mathrm{B}_\mathrm{0}}{\sin{\angle\mathrm{C}_\mathrm{0}\mathrm{A}_\mathrm{0}\mathrm{B}_\mathrm{0}}}=\frac{\mathrm{A}_\mathrm{0}\mathrm{B}_\mathrm{0}}{\sin{\angle\mathrm{A}_\mathrm{0}\mathrm{C}_\mathrm{0}\mathrm{B}_\mathrm{0}}}\Longleftrightarrow\frac{7}{\sin{\angle\mathrm{C}_\mathrm{0}\mathrm{A}_\mathrm{0}\mathrm{B}_\mathrm{0}}}=\frac{5}{\frac{5\sqrt3}{14}}\Leftrightarrow\sin{\angle\mathrm{C}_\mathrm{0}\mathrm{A}_\mathrm{0}\mathrm{B}_\mathrm{0}}=\frac{\sqrt3}{2}
    \therefore\cos{\angle\mathrm{A}_\mathrm{2}\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{0}}=1-2\left(\frac{\sqrt3}{2}\right)^2=-\frac{1}{2}
    よって,\triangle\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{2}に余弦定理を用いると,
    {\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{2}}^2={\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{2}}^2+{\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{2}}^2-2\cdot\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{2}\cdot\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{2}\cos{\angle\mathrm{A}_\mathrm{2}\mathrm{A}_\mathrm{1}\mathrm{A}_\mathrm{0}}\bigm\Leftrightarrow{\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{2}}^2=\left(\frac{40\sqrt3}{7}\right)^2+\left(\frac{40\sqrt3}{7}\right)^2-2\cdot\frac{40\sqrt3}{7}\cdot\frac{40\sqrt3}{7}\cdot\left(-\frac{1}{2}\right)\Leftrightarrow\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{2}=\frac{120}{7}……(答)

    (3)
    前問と同様に考えると,

    上図のようになる.
    \therefore\mathrm{A}_\mathrm{0}\mathrm{A}_{\mathrm{2016}}=\frac{2016}{2}\cdot\mathrm{A}_\mathrm{0}\mathrm{A}_\mathrm{2}=17280……(答)

2016年早稲田大学商学部|過去問徹底研究 大問2

2019.09.30

方針の立て方 実際に図形を描いて試してみると題意をつかみやすい.問題文の通りに考えると,「を決めると線分が決まり,を変数(はによって定まる)としてを考えることができる」ということである.を考えるときには,は定数扱いする. (1) はによって定まるので,は実質の一変数関数(2次関数)となる.後は2次関

  • …続きを読む
  • 方針の立て方
    実際に図形を描いて試してみると題意をつかみやすい.問題文の通りに考えると,「\alpha,\betaを決めると線分\mathrm{P}_1\mathrm{P}_2が決まり,aを変数(baによって定まる)としてS\left(a,b\right)を考えることができる」ということである.S\left(a,b\right)を考えるときには,\alpha,\betaは定数扱いする.
    (1)
    baによって定まるので,S\left(a,b\right)は実質aの一変数関数(2次関数)となる.後は2次関数の最大値問題を解く解法を取ればよい.
    M\left(\alpha,\beta\right)は,引数からも分かるように\alpha,\betaの関数である.よって,M\left(\alpha,\beta\right)について考えるときには,変数は\alpha,\betaである.
    (2)
    まずは指定されている条件を\alpha,\betaの式で書き直すこと.そうすれば,以下では\alpha,\betaを変数で扱うと都合がいいことが分かる(書き直した条件:\beta=\alpha+1より,実質変数は\alphaのみとなる).後は,存在範囲を考えれば良い.典型的な一文字固定法の考え方で解こうとすると,-1\leqq k\leqq00\leqq k\leqq1のときで場合分けが必要になることが分かる.後は,それぞれで場合分けをして考えていく.図形で考えたときにS\left(a,b\right)がどういう意味を持つのかを考えよう.

    解答例
    (1)
    線分\mathrm{P}_1\mathrm{P}_2:y=\left(\alpha+\beta\right)x-\alpha\beta (\alpha\leqq x\leqq\beta)
    \mathrm{P}\left(a,b\right)を代入して,
    b=\left(\alpha+\beta\right)a-\alpha\beta (\alpha\leqq a\leqq\beta)
    \therefore S\left(a,b\right)=b-a^2=\left(\alpha+\beta\right)a-\alpha\beta-a^2=-\left(a-\frac{\alpha+\beta}{2}\right)^2+\frac{\left(\beta-\alpha\right)^2}{4}\leqq\frac{\left(\beta-\alpha\right)^2}{4}
    等号成立はa=\frac{\alpha+\beta}{2}のときであり,これは\mathrm{P}_1\mathrm{P}_2の中点であり,適当である.
    \therefore M\left(\alpha,\beta\right)=\frac{\left(\beta-\alpha\right)^2}{4}……(答)

    (2)
    ⅰ)を満たすには,
    \frac{\left(\beta-\alpha\right)^2}{4}=\frac{1}{4}
    であれば必要十分.\beta-\alpha>0に注意して解くと,
    \beta-\alpha=1\Leftrightarrow\beta=\alpha+1
    ⅱ)を満たすには,
    \left|\alpha+\beta\right|\leqq1
    これらを図示すると,

    つまり,
    \begin{cases} \beta=\alpha+1 \\ -1\leqq\alpha\leqq0 \end{cases}
    さて,考えている存在範囲のx座標の範囲は-1\leqq\alpha\leqq x\leqq\beta=\alpha+1\leqq1より,-1\leqq x\leqq1である.そこで,考えている存在範囲のx=k\left(-1\leqq k\leqq1\right)でのy座標の最大値と最小値の差を求める.これを求めるには,\alpha,\betaを変数として,S\left(k,b\right)の最大値と最小値を考えれば良い.ここで,
    S\left(k,b\right)=\left(\alpha+\beta\right)k-\alpha\beta-k^2=\left(2\alpha+1\right)k-\alpha\left(\alpha+1\right)-k^2=-\left(\alpha-\frac{2k-1}{2}\right)^2+\frac{1}{4}
    である.
    -1\leqq k\leqq0のとき
    -1\leqq\alpha\leqq kの範囲を考えれば必要十分.

    \frac{2k-1}{2}<kはいつでも成り立つ.
    ①の場合\left(\frac{2k-1}{2}\leqq-1\Leftrightarrow k\leqq-\frac{1}{2}\right)
    0=\left.S\left(k,b\right)\right|_{\alpha=k}\leqq S\left(k,b\right)\leqq\left.S\left(a,b\right)\right|_{\alpha=-1}=-k^2-k
    ②の場合\left(-1\leqq\frac{2k-1}{2}\Leftrightarrow-\frac{1}{2}\leqq k\right)
    0=\left.S\left(k,b\right)\right|_{\alpha=k}\leqq S\left(k,b\right)\leqq\left.S\left(a,b\right)\right|_{\alpha=\frac{2k-1}{2}}=\frac{1}{4}
    0\leqq k\leqq1のとき,
    k\leqq\beta\leqq1\Leftrightarrow k-1\leqq\alpha\leqq0の範囲を考えれば必要十分.

    k-1<\frac{2k-1}{2}はいつでも成り立つ.
    ①の場合\left(0\leqq\frac{2k-1}{2}\Leftrightarrow\frac{1}{2}\leqq k\right)
    0=\left.S\left(k,b\right)\right|_{\alpha=k-1}\leqq S\left(k,b\right)\leqq\left.S\left(a,b\right)\right|_{\alpha=0}=-k^2+k
    ②の場合\left(\frac{2k-1}{2}\leqq0\Leftrightarrow k\leqq\frac{1}{2}\right)
    0=\left.S\left(k,b\right)\right|_{\alpha=k-1}\leqq S\left(k,b\right)\leqq\left.S\left(a,b\right)\right|_{\alpha=\frac{2k-1}{2}}=\frac{1}{4}
    以上より,求める面積は,
    \int_{-1}^{-\frac{1}{2}}\left(-k^2-k\right)dk+\int_{-\frac{1}{2}}^{0}\frac{1}{4}dk+\int_{0}^{\frac{1}{2}}\frac{1}{4}dk+\int_{\frac{1}{2}}^{1}\left(-k^2+k\right)dk=\left[-\frac{1}{3}k^3-\frac{1}{2}k^2\right]_{-1}^{-\frac{1}{2}}+\left[\frac{1}{4}k\right]_{-\frac{1}{2}}^0+\left[\frac{1}{4}k\right]_0^{\frac{1}{2}}+\left[-\frac{1}{3}k^3+\frac{1}{2}k^2\right]_{\frac{1}{2}}^1=\frac{5}{12}……(答)

2016年早稲田大学商学部|過去問徹底研究 大問1

2019.09.30

方針の立て方 (1) 典型問題であり,特筆事項なし. (2) 代数方程式の有理数解に着目していることから解法を得る. (3) 実際に考えてみることで解法を得る.ただし,を正2016角形で考えるのは難しいため,正4角形や,正5角形,正6角形などで考えてみる.そうすると,約数の問題であることに気付ける.

  • …続きを読む
  • 方針の立て方
    (1)
    典型問題であり,特筆事項なし.

    (2)
    代数方程式の有理数解に着目していることから解法を得る.

    (3)
    実際に考えてみることで解法を得る.ただし,Pを正2016角形で考えるのは難しいため,正4角形や,正5角形,正6角形などで考えてみる.そうすると,約数の問題であることに気付ける.

    (4)
    最初の式のままでは考えづらいため,変形を試みる.そこで,積和の公式を使って,三角関数の積の形を和の形に直す.
    本問に限らず,数学では,和から積への変形,積から和への変形をすることで解法が見えることが多いため,困ったときにはこのような変形をとりあえず試みることを心がけよう.

    解答例
    (1)ア:1024
    (2)イ:5
    (3)ウ:3528
    (4)エ:-1008

    解説
    (1)
    合同式の法は全部2016とする.
    2^{11}=2048\equiv32=2^5
    である.
    \therefore2^{100}=2\cdot\left(2^{11}\right)^9\equiv2\cdot\left(2^5\right)^9=2^2\cdot\left(2^{11}\right)^4≡22⋅254=2112≡252=1024……(答)

    (2)
    有理数解は全て

    の形で表せる.よって,1以上の有理数解の候補は,1,\frac{3}{2},3である.
    (ⅰ)x=1が解になると仮定して,方程式に代入すると
    2\cdot1^3-a\cdot1^2+b\cdot1+3=0\Leftrightarrow a=5+b\geqq5+1=6
    (ⅱ)x=\frac{3}{2}が解になると仮定して,方程式に代入すると
    2\cdot\left(\frac{3}{2}\right)^3-a\cdot\left(\frac{3}{2}\right)^2+b\cdot\frac{3}{2}+3=0\Leftrightarrow a=\frac{2b+13}{3}\geqq\frac{2\cdot1+13}{3}=5
    (ⅱ)x=3が解になると仮定して,方程式に代入すると
    2\cdot3^3-a\cdot3^2+b\cdot3+3=0\Leftrightarrow a=\frac{b+19}{3}\geqq\frac{1+19}{3}=\frac{20}{3}
    以上(ⅰ)~(ⅲ)より,求めるaの最小値は,5……(答)

    (3)
    2016の任意の約数をaとする.
    Pの頂点を結ぶことで作ることができる正多角形は,正a角形(a=1,2を除く)のみである.
    a角形の作り方は\frac{2016}{a}通りあるが,\frac{2016}{a}も2016の約数となる.
    よって,求める個数は,2016の約数の和から,a=1,2のときの分\frac{2016}{a}=2016,1008を除いた個数となる.2016=2^5\cdot3^2\cdot7より,2016の約数の和は,
    \sum_{z=0}^{1}\sum_{y=0}^{2}\sum_{x=0}^{5}{2^x\cdot3^y\cdot7^z}=\left(7^0+7^1\right)\left(3^0+3^1+3^2\right)\left(2^0+2^1+2^2+2^3+2^4+2^5\right)=8\cdot13\cdot63=6552
    よって,求める個数は,
    6552-2016-1008=3528個……(答)

    (4)
    \left(\sum_{k=1}^{2016}{k\sin{\frac{\left(2k-1\right)\pi}{2016}}}\right)\sin{\frac{\pi}{2016}}=\sum_{k=1}^{2016}\left\{k\sin{\frac{\left(2k-1\right)\pi}{2016}}\sin{\frac{\pi}{2016}}\right\}
    ここで,積和の公式より,
    \sin{\frac{\left(2k-1\right)\pi}{2016}}\sin{\frac{\pi}{2016}}=\frac{1}{2}\left\{\cos{\frac{\left(k-1\right)\pi}{1008}}-\cos{\frac{k\pi}{1008}}\right\}
    であるから,
    \sum_{k=1}^{2016}\left\{k\sin{\frac{\left(2k-1\right)\pi}{2016}}\sin{\frac{\pi}{2016}}\right\}=\sum_{k=1}^{2016}\left\{\frac{k}{2}\cos{\frac{\left(k-1\right)\pi}{1008}}-\frac{k}{2}\cos{\frac{k\pi}{1008}}\right\}=\left(\frac{1}{2}\cos{\frac{0}{1008}}-\frac{1}{2}\cos{\frac{\pi}{1008}}\right)+\left(\frac{2}{2}\cos{\frac{\pi}{1008}}-\frac{2}{2}\cos{\frac{2\pi}{1008}}\right)+\left(\frac{3}{2}\cos{\frac{2\pi}{1008}}-\frac{3}{2}\cos{\frac{3\pi}{1008}}\right)+\cdots\cdots+\left(\frac{2016}{2}\cos{\frac{2015\pi}{1008}}-\frac{2016}{2}\cos{\frac{2016\pi}{1008}}\right)=\frac{1}{2}\left(\cos{\frac{0}{1008}}+\cos{\frac{\pi}{1008}}+\cos{\frac{2\pi}{1008}}+\cdots\cdots+\cos{\frac{2015\pi}{1008}}\right)-1008\cos{2\pi}
    S=\cos{\frac{0}{1008}}+\cos{\frac{\pi}{1008}}+\cos{\frac{2\pi}{1008}}+\cdots\cdots+\cos{\frac{2015\pi}{1008}}とおくと,

    上図のように,単位円上では左右対称であるため,項が全て相殺し,0となる.
    \therefore S=0
    よって,
    \sum_{k=1}^{2016}\left\{k\sin{\frac{\left(2k-1\right)\pi}{2016}}\sin{\frac{\pi}{2016}}\right\}=-1008\cos{2\pi}=-1008……(答)


  • 偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 早稲田校舎 : 〒162-0045
    東京都新宿区馬場下町9-7 ハイライフホーム早稲田駅前ビル4階
    TEL: 03-6884-7991
    営業時間: 月〜土 9:00-21:30 
  • Facebook Twitter
    Page Top

Copyright © BETELGEUSE corporation All Rights Reserved.

PAGE TOP