偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 資料請求
  • カウンセリング

【物理】運動方程式の立て方(運動方程式その2)

2016.12.21

運動方程式の立て方 運動方程式はma=Fで表されます。 まず、このmはどの物体についてなのか、注目する物体を決めます。この質量がmになります。 次に、加速する方向を見極めます。このとき、加速度aと同じ方向にx軸、垂直な方向にy軸をとるとわかりやすいです。 最後に、この物体について働く力をすべて図示し

  • …続きを読む
  • [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]運動方程式は何だかはわかったけど実際どうやって使うの?[/speech_bubble] [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="山田さん"]とりあえず力を全部図示してみればいいのかな?[/speech_bubble] [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]ん−。x軸、y軸はどうやってとったらいいのかとか難しいね。[/speech_bubble] [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="山田さん"]そもそもつりあっているところも運動方程式を立てられるの?[/speech_bubble]

    運動方程式の立て方

    運動方程式はma=Fで表されます。

    まず、このはどの物体についてなのか、注目する物体を決めます。この質量がになります。

    次に、加速する方向を見極めます。このとき、加速度aと同じ方向にx軸、垂直な方向にy軸をとるとわかりやすいです。

    最後に、この物体について働く力をすべて図示します。こうして、x軸、y軸に力を分解し、それぞれについて運動方程式を立てることができます。

     

    つりあっている物体についても運動方程式は立てることができます。このときは、a=0になるので、左辺は0になるだけです。

【物理】運動方程式とは?(運動方程式その1)

2016.12.15

運動方程式は、力学において最も重要な関係式の1つです。なんとなく学んでいるとつまずきやすいポイントですので、しっかり理解しておきましょう。 運動方程式とは 例として、平面上で台車(=摩擦力を考えない物体)に力Fが加わって走っている場合を考えます。 この場合、運動方程式は、下のような式で表されます。

  • …続きを読む
  • [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]運動方程式について習ったけど、よく分からないなぁ。[/speech_bubble] [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="山田さん"]力が加わると物体が加速する、っていう意味らしいよ。[/speech_bubble] [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]動いている物体には力がはたらいているってこと?[/speech_bubble] [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="山田さん"]動いている物体じゃなくて、加速している物体みたいだけど、ちょっと難しいよね。[/speech_bubble]

    運動方程式は、力学において最も重要な関係式の1つです。なんとなく学んでいるとつまずきやすいポイントですので、しっかり理解しておきましょう。

    運動方程式とは

    例として、平面上で台車(=摩擦力を考えない物体)に力Fが加わって走っている場合を考えます。

    この場合、運動方程式は、下のような式で表されます。

    F=ma

    ここで、mは物体の質量、aは物体の加速度です。力と加速度の向きは一致します。

    運動方程式はF=maで表され、質量mの物体に力Fがはたらくとき、その物体は加速度aで運動する、という意味の方程式です。

    他の例として、重力を考えてみます。重力加速度をgとしたとき、質量mの物体に働く重力はmgです。力のつり合いを考える上で、平面の上で止まっている物体にはたらく重力と物体に対する抗力を考えたと思いますが、その際物体にはたらく重力はmgとなります。もし物体が何にも接していないと、抗力が働かないため、物体は加速度gで鉛直下方向に落下します。

    また、加速度をもたない(a=0)の物体の場合、物体にはたらく力の合力は0となります。加速度をもたない物体は、静止または等速直線運動をしています。よって、力がつり合っている場合は、運動方程式において=0の場合と考えることができます。

    注意しておきたいこととして、「物体が動いているときは物体に力がはたらいている」ではありません。上の図では、平面上を等速で台車が走っている状態を表していますが、この台車は等速なので加速度は0であり、力は働いていません(現実には空気抵抗があるので力は働いていますが)。

     

【物理】剛体のつり合いと重心(力のモーメントその2)

2016.12.15

剛体が静止しているとき、運動も回転もしていません。よって、剛体にはたらく力のつり合いだけではなく、力のモーメントもつり合っている必要があります。 モーメントとは、剛体を回転させる力です。力のモーメントがつり合っているとき、時計回りのモーメントと反時計回りのモーメントの大きさが等しくなっています。 2

  • …続きを読む
  • [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]物体にはたらく力がつり合っていれば、物体は動かないんだったよね。[/speech_bubble] [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="山田さん"]大きさのある物体(剛体)について考える時は、力のモーメントもつり合ってないといけないよ。[/speech_bubble] [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]そうか、力のモーメントがつり合っていないと剛体は動いちゃうんだよね。[/speech_bubble] [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="山田さん"]力のモーメントのつり合いについて考えるときは、重心についても考えないといけないね。[/speech_bubble]

    剛体が静止しているとき、運動も回転もしていません。よって、剛体にはたらく力のつり合いだけではなく、力のモーメントもつり合っている必要があります。

    モーメントとは、剛体を回転させる力です。力のモーメントがつり合っているとき、時計回りのモーメントと反時計回りのモーメントの大きさが等しくなっています。

    2つのおもりがつり合っている場合

    左右におもりがついた棒が支柱に支えられて静止している状態を考えます。左側のおもりの質量をM、右側のおもりの質量をmとします。棒の質量は考えません。また、支柱から棒の左端までの長さをa、右端までの長さをxとします。このとき、xを求めてみます。

    支柱を支点としたとき、右のおもりにはたらく重力によって、棒は時計回りに回転しようとします。また、左のおもりにはたらく重力によって、棒は反時計回りに回転しようとします。この2種類のモーメントがつり合っているので、

    mgx=Mga

    が成り立ちます。よって、 x=\frac{Ma}{m} となります。

    この例では支柱がある位置を支点としました。しかし、モーメントがつり合っている場合はどの地点を支点としてもいいのです。モーメントがつり合っているということは剛体が回転していないので、どこを支点をしてもモーメントはつり合っているのです。

    左のおもりを支点として考えます。このとき、右のおもりにはたらく重力により棒は時計回りに回転しようとします。
    また、支柱にはたらく抗力Nにより棒は反時計回りに回転しようとします。左のおもりにはたらく重力については、支点からの距離が0なので無視できます。よって、

    mg(a+x)=Na

    が成り立ちます。ここで、力のつり合いによりN=(m+M)gであるので、

    mga+mgx=mga+Mga

    が成り立ち、先程と同様に x=\frac{Ma}{m} が求められました。

    結果は同じでしたが、この例では支柱を支点とした場合の方が計算が楽になりました。どの点を支点をした場合でも問題を解くことはできますが、多くの力がはたらいている点、および求めるのに手間がかかる力がはたらいている点を支点として考えた方が計算が楽な場合が多いです。

    重心について考える

    先程の問題では、棒の質量を無視することができました。しかし、棒の質量が無視できない場合もあります。このような場合、剛体のどの部分に重力がはたらいているか分からなければモーメントを求めることができません。このようなとき、剛体の一点に力がはたらいているものと考え、その点を重心と呼びます

    物体を構成する質点の質量をm_{1},m_{2}・・・とし、座標を(x_{1},y_{1}),(x_{2},y_{2})・・・とします。このとき、重心の質量をx_{G}とすると

    のようになります。y座標に関しても同様に求められます。

    球や直方体の箱のように、対称な物体の場合、重心はその剛体の中心になります。では、不規則な物体についてはどのように求めればいいでしょうか。例として、以下のような物体の重心を求めてみます。

    重心の求め方は、基本的には

    ①物体を分かりやすい形に分割する

    ②分割した図形の重心と質量を求める

    ③各重心、各質量を上記の式に代入する

    といった手順で求められます。この手順に従って求めてみましょう。

    まず、物体を分かりやすい形に分割します。この場合、3×3の正方形と1×1の正方形に分割できます。

    次に、それぞれの図形の重心と質量を求めます。3×3の正方形と1×1の正方形の重心は、それぞれ(1.5,1.5),(3.5,0.5)となります。1×1の正方形の質量をmとすると、3×3の正方形の質量は9mとなります。

    したがって、求める重心の座標は

    x_{G}=(1.5×9m+3.5×m)/(9m+m)=1.7

    y_{G}=(1.5×9m+0.5×m)/(9m+m)=1.4

    より、(1.7,1.4)となります。

    また、物体を4×3、質量12mの長方形と、1×2、質量-2mの長方形に分割する、という考え方もできます。この場合、それぞれの重心は(2,1.5),(3.5,2)となるので、

    x_{G}=(2×12m+3.5×(-2m))/(12m-2m)=1.7

    y_{G}=(3.5×12m+3×(-2m))/(12m-2m)=1.4

    より、同様に(1.7,1.4)となります。

【物理】力のモーメントとは?(力のモーメントその1)

2016.12.14

苦手とする人が多い分野です。しっかり理解して他との差をつけましょう。 力のモーメントとは? 力のモーメントは物を回転させる力のことをさします。 物体を回転させるといってもイメージがなかなかつきづらいかもしれません。 そういったときはまずは実際に自分で動作を行ってみましょう。 鉛筆または、シャープペン

  • …続きを読む
  • [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]次は物体の回転まで考えないといけないの?[/speech_bubble] [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="山田さん"]それが力のモーメントか![/speech_bubble] [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]考えないと行けない力が多くなってわからなくなりそうだ…。[/speech_bubble]

    苦手とする人が多い分野です。しっかり理解して他との差をつけましょう。

    力のモーメントとは?

    力のモーメントは物を回転させる力のことをさします。
    物体を回転させるといってもイメージがなかなかつきづらいかもしれません。
    そういったときはまずは実際に自分で動作を行ってみましょう。

    鉛筆または、シャープペンをもっていますか?真中部分をもって回してみましょう。

     それでもイメージがつきづらい場合は自転車の車輪が軸を中心として回転していくのをイメージしてみると良いでしょう。

    物理ができなくなる時には現象のイメージができてないのに、ムリに公式を覚えているからです。

    公式の意味とイメージが一致するまで何度も考えてみて下さい。
    また、このモーメントを考えるときの物体は大きさがあります。このような物体を剛体といいます。(逆に大きさを考えないときは質点といいます。)

    この力のモーメントは、

    (力の大きさ)×(力に垂直なうでの長さ)

    =(うでに垂直な力の大きさ)×(うでの長さ)で表されます。

    そのため、成分でわけて考える必要があります。

【物理】垂直抗力、摩擦力(力の種類その3)

2016.12.14

垂直抗力は床と接している場合、必ず働く力です。摩擦力も、現実世界ではすべての物体に働くので、考慮しなければならない力です。 垂直抗力   垂直抗力は物体が置かれている面から受ける力のことで、向きは床に対して垂直に働きます。例えば、重さmの物体を置いて、上からFのちからで押すと、力のつりあい

  • …続きを読む
  • [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]まだまだ力の種類はあるのか…。[/speech_bubble] [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="山田さん"]垂直抗力とか、摩擦力とかね。[/speech_bubble] [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]覚えきれる気がしないよー。[/speech_bubble]

    垂直抗力は床と接している場合、必ず働く力です。摩擦力も、現実世界ではすべての物体に働くので、考慮しなければならない力です。

    垂直抗力

     

    垂直抗力は物体が置かれている面から受ける力のことで、向きは床に対して垂直に働きます。例えば、重さの物体を置いて、上からFのちからで押すと、力のつりあいを考えて垂直抗力NFmgとなります。

    もし、地面が斜めの場合でも垂直抗力は地面に垂直に働くので力の分解を水平方向、鉛直方向などで考える必要がでてくるので注意しましょう。

     

    摩擦力

    摩擦力とは、物体の動きを妨げようとする力です。また、物体が静止しているときに働く摩擦力(静止摩擦力)、と運動している物体に働く摩擦力(動摩擦力)には違いがあるので注意しましょう。しかし、どちらも力の大きさは垂直抗力に比例します。これは、身のまわりのもので考えるとわかりやすいです。重い物を押したときはなかなか物体は動かないですが、軽いものであればより簡単に動かすことができます。

    まず、静止している物体にも摩擦力は働きます。そのとき、物体が動きだすまでどんどん加える力を大きくしていくとします。このとき摩擦力は少しずつ大きくなっていきます。そして、これ以上の力を加えたら、動き出す境界の力の大きさをμNと表します。このときのμは静止摩擦係数と呼ばれます。

    運動している物体には常に同じ大きさの摩擦力がかかります。この時の力の大きさはμ’Nと表され、μ’のことを動摩擦係数といいます。一般にはこの動摩擦力は静止摩擦力より小さくなります。

     

     

    ここで物理特有の言い回しなのですが、問題文中に”なめらかな面”という単語が出てきたら摩擦力は考慮しなくて良いという意味です。また”粗い面”という単語がでたら摩擦力を考慮しなければなりません。これらの言い回しは覚えておきましょう。(他にも静かに放す→初速度が0などがあります。)

     

【物理】弾性力(力の種類その1)

2016.12.14

  弾性力   弾性力とはバネが元の長さに戻ろうとすることによって物体に生じる力です。この元のバネの長さを自然長といいます。 力の大きさを式で表すと、F = kxで表されます。このことをフックの法則といい、kはバネ定数、xはバネが自然長からどれだけ伸びた、もしくは縮んだかを表しま

  • …続きを読む
  • [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]力にはいろんな種類があるんだね。[/speech_bubble] [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="山田さん"]とくに弾性力は覚えておかないとね。[/speech_bubble] [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]少し独特だからね。[/speech_bubble]

     

    弾性力

     

    弾性力とはバネが元の長さに戻ろうとすることによって物体に生じる力です。この元のバネの長さを自然長といいます。

    力の大きさを式で表すと、F = kxで表されます。このことをフックの法則といい、kはバネ定数、xはバネが自然長からどれだけ伸びた、もしくは縮んだかを表します。

    つまり、力の大きさはバネがどれだけ自然長から変化したかに比例します。伸びれば伸びるほど、元に戻ろうとする力は大きくなります。

    ここで注意しておきたいのはバネが縮んだか、もしくは伸びたかによって力の向きは変わります。

    運動方程式は

    ma=-kx \Longrightarrow  a=-\frac{k}{m}x

    となります。バネの力をFとしての方向は自然長を基準に伸びを正、縮みを負として復元力になっているかをちゃんと確認しましょう

    > 0(伸びる) < 0(縮む)
    < 0(戻ろうとする) > 0(押し戻す)

     

     

【物理】浮力、圧力(力の種類その2)

2016.12.14

圧力 圧力とは1㎡あたりの面(これを単位面積と言います)を垂直に押す力のことをいいます。 圧力をPとすると、P=F/Sであらわされます。身近な例では、空気による圧力のことを大気圧、水による圧力のことを水圧といいます。 例)深さhにおける水圧を考えます。 その上にある水の重さをm、密度をρ、底面積をS

  • …続きを読む
  • [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]浮力とか圧力って式も難しいし、全然わからない。[/speech_bubble] [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="山田さん"]力についてわかってきたはずだったのにな…。[/speech_bubble] [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]なんで面積で割ったり、体積をかけたりしないといけないの?[/speech_bubble]

    圧力

    圧力とは1㎡あたりの面(これを単位面積と言います)を垂直に押す力のことをいいます。

    圧力をPとすると、PF/Sであらわされます。身近な例では、空気による圧力のことを大気圧、水による圧力のことを水圧といいます。

    例)深さhにおける水圧を考えます。

    その上にある水の重さをm、密度をρ、底面積をSとすると、(質量)=(密度)×(体積)より

    m=ρShで表されます。

    また、(重力の大きさ)=mgρShgとなり、

    圧力は、力を面積Sでわるので、PρVgとなります。

    これに大気圧もかかっているので大きさをPoとすると、

    水圧はPPoρVgとなります。

    浮力

    浮力とは、重力とは逆向きに働く力で、物体が中にいる液体(気体)からうける力のことです。

    液体(気体)の中にある物体が受ける浮力の大きさは物体が押しのけている液体(気体)の重さに等しくなります。このことをアルキメデスの原理といいます。

    これを式で表すと、F=ρVgで表されます(ρ:液体の密度、V:体積)

    ρVはその物体が液体の中で占領している体積に液体の密度をかけ、おしのけた液体の質量を表し、ρVgは重さを表していることがわかります。

    2つの違いに注意し、きちんと理解していきましょう。

【物理】力の分解とは?どの方向に分解するの?(力のつり合いその4)

2016.12.09

着目する物体にいろいろな方向から力がはたらいている場合、直接つり合いの式を立てるのは難しくなります。そんな時は、物体にはたらく力を2方向に分けて考えましょう。これが力の分解です。 分解した2つの方向について、それぞれ別々につり合いの式を立てれば、どんな方向に対しても力のつり合いを考えることができます

  • …続きを読む
  • [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]力の方向が斜めだったら、どうやって力のつり合いを考えたらいいんだろう。[/speech_bubble] [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="山田さん"]力の向きを2つに分けると、考えやすくなるよ。[/speech_bubble] [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]なるほど、力の分解ってそういうことか。でも、どの方向に分ければいいんだろう。[/speech_bubble] [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="山田さん"]水平・鉛直に分けることが多いけど、いろんな場合があるよ。[/speech_bubble]

    着目する物体にいろいろな方向から力がはたらいている場合、直接つり合いの式を立てるのは難しくなります。そんな時は、物体にはたらく力を2方向に分けて考えましょう。これが力の分解です。

    分解した2つの方向について、それぞれ別々につり合いの式を立てれば、どんな方向に対しても力のつり合いを考えることができます。

    2本のひもで引っ張る場合

    2本のひもで物を引っ張る(2方向に力を加える)ことを考える問題が存在します。
    例として、おもりが天井から2本の糸で吊るされている場合を考えてみましょう。

    おもりが2本の糸で吊るされて止まっている場合、ひもで引っ張る力は重力と平行ではありません。
    ですが、おもりが止まっているので、2本のひもで引っ張る力の合力は重力とつり合うはずです。
    この力を2本それぞれのひもで引っ張る力に分解することで、それぞれのひもによる張力を求めることができます。

    簡単に考えるため、図の上で矢印の大きさにより力の分解を考えてみましょう。
    まず、2本のひもにより引っ張る力の合力を考えます。重力とつり合っているので、重力と逆方向で同じ大きさの矢印を引きます。

    次に、その合力が平行四辺形の対角線になるように、矢印の先からそれぞれのひもと平行な線を引きます。
    この平行四辺形の上で、ひも上の2辺と同じ大きさの矢印がそれぞれのひもによりおもりを引っ張る力になります。

    基本的に、水平な2方向でなければどんな方向にも力を分解することはできます。
    ですが、問題を考える上では、力を垂直な2方向に分解する方が考えやすくなります

    力の分解を使ってつり合いを考える

    ざらざらとした地面に置いた物体を、ひもで斜め上に引っ張ることを考えます。
    ざらざらとした地面では、物体を地面に対して水平な方向に引っ張ると、「摩擦力」という力が働きます。(下図の黄緑)
    摩擦力は地面に対して水平な方向に働きます。

    よって、この物体には地面に水平な方向、垂直な方向、斜め方向と、様々な方向に力が働いています。
    弱い力で引っ張り、物体が動いていないとしたとき、どのような力がつり合っているかを考えます。
    このとき、まず斜め方向にはたらいている、物体をひもで引っ張る力を分解しましょう。

    他の力は地面に水平な方向、垂直な方向であるので、考えやすいように地面に水平な方向、垂直な方向の2つに分解します。地面に水平な方向をx方向、垂直な方向をy方向として、それぞれの方向について力のつり合いを考えます。

    まず、どのようにして力を分解したらいいかを考えます。ひもで引っ張る力の大きさをT、引っ張る方向の地面からの角度をθとします。
    このとき、分解した後の力は水平方向にはTcosθ、垂直方向にはTsinθとなります。

    次に、それぞれの方向について力のつり合いを考えましょう。
    x方向に働く力は、摩擦力と、ひもで水平方向に引っ張る力Tcosθです。よって、(摩擦力)=Tcosθとなります。

    y方向に働く力は、重力、垂直抗力と、ひもで垂直方向に引っ張る力Tsinθです。
    上向きに働く力と下向きに働く力を考えると、(垂直抗力)+Tsinθ=(重力)となります。

    このように、力と分解する方向の角度に注意して、三角関数を用いて表すことで、力を分解することができます。
    鉛直と水平に分解するのが一番オーソドックスですが、他の力が働いている方向によっては別の方向に分解した方がいい場合もあります。
    具体的には、分解するべき力の数がなるべく少なくなるようにした方がいいです。
    例えば、上記のような問題で斜面に対する物体について考えるときは、その斜面に水平な方向、鉛直な方向に分解した方がいいです。
    他の方向に分解してしまうと、摩擦力や垂直抗力も分解しなければいけなくなり、計算が複雑になってしまいます。
    どのように分解すれば、一番きれいに解けるかを意識して考えましょう。

    ところでなぜ力は分解できるのでしょうか。
    これは実は力は数学Bで学ぶベクトルで考えるとわかります。数学的にはベクトルの合成、分解をやっていることと同じです。

【物理】作用反作用の法則とは?(力のつり合いその3)

2016.12.09

作用・反作用の法則とは、物体Aが物体Bに力を加えるとき、物体Aはその力と同じ大きさで逆向きの力を受けるという法則です。 分かりにくい部分のため、ここでつまづいてしまう人も多い部分です。 しかし、「力のつりあい」を考える上では、この作用・反作用を用いて考えることが多くなるため、しっかり身につけておく必

  • …続きを読む
  • [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]作用と反作用ってよく分からないなー。「2つのものが力を及ぼしあう」って聞いたけど。[/speech_bubble] [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="山田さん"]自分が壁を押すと、自分も壁から押されるでしょ?そういうことよ。[/speech_bubble] [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]どんなものでも成り立つの?イメージしにくいなぁ。[/speech_bubble] [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="山田さん"]人じゃなくて、ものが何かを押すことが多いから、分かりにくいよね。[/speech_bubble]

    作用・反作用の法則とは、物体Aが物体Bに力を加えるとき、物体Aはその力と同じ大きさで逆向きの力を受けるという法則です。

    分かりにくい部分のため、ここでつまづいてしまう人も多い部分です。

    しかし、「力のつりあい」を考える上では、この作用・反作用を用いて考えることが多くなるため、しっかり身につけておく必要があります。

    日常生活で起こる現象でイメージする

    まず、日常生活で起こる現象で作用・反作用をイメージしてみましょう。

    例えば、ローラースケートを履いて壁を押すと、自分も壁に押し返され、後ろに進むと思います。この場合、「自分が壁を押す力」が作用で、「壁が自分を押す力」が反作用です。

    また、シャープペンシルの頭を押す時、間違えて逆に持ってしまい芯の方を押してしまった場合を考えてみます。この場合、「指が芯を押す力」が作用で、「芯が指を押す力」が反作用です。経験がある人もいるかと思いますが、とても痛いですね。これは、反作用として芯が指を押すからこそ痛いのです。

    このように、「何かに力を加えると、逆方向に力を受ける」という現象を説明するのが作用・反作用の法則です。

    この法則はあらゆる物に対して成り立ちます。例えば、地球上のあらゆるものは地球の中心に向かって重力を受けますが、これにも反作用はあります。地球が重力により自分を引っ張るとき、自分もまた地球を引っ張るのです。もちろん自分よりも地球の方がはるかに質量が大きいため、地球はほとんど動きませんが、確かに重力にも反作用はあるのです。

    「力のつり合い」との違い

    「力のつり合い」も「作用・反作用」も、同じ大きさで逆方向の向きにはたらく力ですが、この二つは同じではありません。では、この2つの違いは一体どこにあるのでしょうか。

    力のつり合いの式は、1つの物体に注目して立てる式です。これに対し、作用・反作用は2つの物体に注目したときに成り立つ法則です。

    机の上にあるボールを考えます。ボールには重力がかかっていますが、動いていません。このとき、

    1.ボールに対する重力とつり合う力

    2.ボールに対する重力の反作用

    はどのような力でしょうか。

    まず、ボールに対する重力とつり合う力ですが、力のつり合いは1つの物体に対して考えるので、つり合う力はボールに対してはたらく力です。よって、この力は机がボールを押す力です。少し先で出てくる話ですが、この力は垂直抗力とよび、物体が面に接しているとき、面に垂直な方向に働く力です。

    次に、ボールに対する重力の反作用ですが、ボールに対する重力は「地球がボールを引っ張る力」です。作用・反作用は2つの物体に対して考えるので、この場合反作用はボールが地球を引っ張る力です。

    よく、「重力の反作用は垂直抗力だ!」と勘違いする人もいますが、ここから分かる通り重力の反作用は垂直抗力ではありません。同じ大きさの力で、向きが反対なので勘違いしやすい点です。作用・反作用を考えるときは、まず「何が何に対して及ぼす力なのか」を考えることが重要です

    作用・反作用を使った問題例

    Q:天井から糸で吊るされた質量1kgのおもりがある。このとき、天井が糸を引く力は何N?ただし、重力加速度gを9.8(N/kg)とする。また、糸の質量は考えない。

    Ans:まず、おもりについて力のつり合いを考えてみましょう。おもりには下向きに重力mg=1×9.8=9.8 Nがかかっています。このままだとおもりが落ちてしまうので、つり合っている力があるはずです。重力とつり合う力は、糸がおもりを引っ張る力です。この力をTとすると、T=mg=9.8Nとなります。

    次に、糸について力のつり合いを考えます。おもりについて考えたとき、糸がおもりを引っ張る力について考えましたね。この力の反作用として、おもりが糸を引っ張る力というものも存在します。おもりが糸を引っ張る力の大きさは、作用・反作用の法則により糸がおもりを引っ張る力の大きさと同じなので、9.8Nです。これとつり合う力は、天井が糸を引く力Fです。よって、F=9.8Nとなります。

    以上より、天井が糸を引く力は9.8Nとなります。

     

【物理】力のつりあい(力のつりあいその2)

2016.12.07

  力のつりあい   力がつりあっているとき、物体は静止、もしくは等速度直線運動をします。 このときは、すべての力を足した時にゼロになるということです。力はベクトルなので、鉛直方向、水平方向など分けて考える事もできます。 力を図示したら、ある一方向に対してその合力=0なったとき物

  • …続きを読む
  • [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]ふと疑問に思ったんだけど、物が止まってるときも重力とかの力ってはたらいてるよね?[/speech_bubble] [speech_bubble type="ln-flat" subtype="R1" icon="seitow4.gif" name="山田さん"]なのに動かないって不思議な感じだね。[/speech_bubble] [speech_bubble type="ln-flat" subtype="L1" icon="seitom3.gif" name="小山くん"]あ、でも同じ大きさの力が逆に働いてれば動かないか![/speech_bubble]

     

    力のつりあい

     

    力がつりあっているとき、物体は静止、もしくは等速度直線運動をします。

    このときは、すべての力を足した時にゼロになるということです。力はベクトルなので、鉛直方向、水平方向など分けて考える事もできます。

    力を図示したら、ある一方向に対してその合力=0なったとき物体はつりあいます。

    例題)あるおもり(質量)が天井から糸で吊るされ、停止している。そのときの張力の大きさは?

    物体に働く全ての力を考えます。

    重力によって鉛直下向きに大きさmgの力が働く。また、ひもによる張力をTと置くと、その向きは鉛直上向きです。

    上向きを正にすると、Tmg=0となり、T=mgが張力の大きさになります。

     


  • 偏差値30からの早慶圧勝の個別指導塾 HIRO ACADEMIA

  • 早稲田校舎 : 〒162-0045
    東京都新宿区馬場下町9-7 ハイライフホーム早稲田駅前ビル4階
    TEL: 03-6884-7991
    営業時間: 月〜土 9:00-21:30 
  • Facebook Twitter
    Page Top

Copyright © BETELGEUSE corporation All Rights Reserved.

PAGE TOP